Difference between revisions of "SinR"

From SubtiWiki
Jump to: navigation, search
(Original publications)
Line 176: Line 176:
 
<pubmed> 21095906 </pubmed>
 
<pubmed> 21095906 </pubmed>
 
==Original publications==
 
==Original publications==
<pubmed> 22893383 23378512 23430750 23475644 21856853 21815947 22329926,21326214,21708175 8955328, 15661000,8878039, 16923912,15104138,16430695,16430696,18047568,18430133,11751836,1906467,11751836,7635837,11751836, 19201793, 10547280, 15104138, 9799632 19788541 19898538 3125149 8932324 20351052 20923420 8422983 9685500 9158733 </pubmed>
+
<pubmed> 22893383 23378512 23430750 23475644 21856853 21815947 22329926,21326214,21708175 8955328, 15661000,8878039, 16923912,15104138,16430695,16430696,18047568,18430133,11751836,1906467,11751836,7635837,11751836, 19201793, 10547280, 15104138, 9799632 19788541 19898538 3125149 8932324 20351052 20923420 8422983 9685500 9158733 23646920 </pubmed>
  
 
[[Category:Protein-coding genes]]
 
[[Category:Protein-coding genes]]

Revision as of 15:49, 24 May 2013

  • Description: transcriptional regulator of post-exponential-phase responses genes

Gene name sinR
Synonyms sin, flaD
Essential no
Product transcriptional regulator of post-exponential-phase responses genes
Function control of biofilm formation
Gene expression levels in SubtiExpress: sinR
Interactions involving this protein in SubtInteract: SinR
Metabolic function and regulation of this protein in SubtiPathways:
Biofilm, Central C-metabolism, Protein secretion
MW, pI 12 kDa, 7.177
Gene length, protein length 333 bp, 111 aa
Immediate neighbours sinI, tasA
Sequences Protein DNA DNA_with_flanks
Genetic context
SinR context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
SinR expression.png















Categories containing this gene/protein

transcription factors and their control, transition state regulators, biofilm formation

This gene is a member of the following regulons

AbrB regulon, ScoC regulon, Spo0A regulon

The SinR regulon

The gene

Basic information

  • Locus tag: BSU24610

Phenotypes of a mutant

  • the mutation suppresses the galactose toxicity to a galE mutant PubMed

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Protein family:
  • Paralogous protein(s): SlrR

Extended information on the protein

  • Kinetic information:
  • Domains:
    • DNA-binding N-terminal domain (aa 1-69) PubMed
    • SinI-binding C-terminal domain (aa 74-111) PubMed
  • Modification:
  • Cofactor(s):

Database entries

  • KEGG entry: [3]
  • E.C. number:

Additional information

Expression and regulation

  • Additional information:
    • the mRNA is substantially stabilized upon depletion of RNase Y (the half-life of the mRNA increases from 3.5 to 13 min) PubMed

Biological materials

  • Mutant: TMB079 sinR::spec, GP736 (tetR), available in Stülke lab
  • Expression vector:
    • N-terminal Strep-tag, for SPINE, expression in B. subtilis, in pGP380: pGP1083 , available in Stülke lab
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system: B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH), available in Stülke lab
  • FLAG-tag construct: GP960 (spc, based on pGP1331), available in the Stülke lab
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

Reviews

Modelling of the SinI/SinR switch

Jennifer S Hallinan, Goksel Misirli, Anil Wipat
Evolutionary computation for the design of a stochastic switch for synthetic genetic circuits.
Annu Int Conf IEEE Eng Med Biol Soc: 2010, 2010;768-74
[PubMed:21095906] [WorldCat.org] [DOI] (P p)

Original publications

Jared T Winkelman, Anna C Bree, Ashley R Bate, Patrick Eichenberger, Richard L Gourse, Daniel B Kearns
RemA is a DNA-binding protein that activates biofilm matrix gene expression in Bacillus subtilis.
Mol Microbiol: 2013, 88(5);984-97
[PubMed:23646920] [WorldCat.org] [DOI] (I p)

Sean D Stowe, Andrew L Olson, Richard Losick, John Cavanagh
Chemical shift assignments and secondary structure prediction of the master biofilm regulator, SinR, from Bacillus subtilis.
Biomol NMR Assign: 2014, 8(1);155-8
[PubMed:23475644] [WorldCat.org] [DOI] (I p)

Joseph A Newman, Cecilia Rodrigues, Richard J Lewis
Molecular basis of the activity of SinR protein, the master regulator of biofilm formation in Bacillus subtilis.
J Biol Chem: 2013, 288(15);10766-78
[PubMed:23430750] [WorldCat.org] [DOI] (I p)

Ying Lei, Taku Oshima, Naotake Ogasawara, Shu Ishikawa
Functional analysis of the protein Veg, which stimulates biofilm formation in Bacillus subtilis.
J Bacteriol: 2013, 195(8);1697-705
[PubMed:23378512] [WorldCat.org] [DOI] (I p)

Yunrong Chai, Pascale B Beauregard, Hera Vlamakis, Richard Losick, Roberto Kolter
Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis.
mBio: 2012, 3(4);e00184-12
[PubMed:22893383] [WorldCat.org] [DOI] (I e)

Loralyn M Cozy, Andrew M Phillips, Rebecca A Calvo, Ashley R Bate, Yi-Huang Hsueh, Richard Bonneau, Patrick Eichenberger, Daniel B Kearns
SlrA/SinR/SlrR inhibits motility gene expression upstream of a hypersensitive and hysteretic switch at the level of σ(D) in Bacillus subtilis.
Mol Microbiol: 2012, 83(6);1210-28
[PubMed:22329926] [WorldCat.org] [DOI] (I p)

Christine Diethmaier, Nico Pietack, Katrin Gunka, Christoph Wrede, Martin Lehnik-Habrink, Christina Herzberg, Sebastian Hübner, Jörg Stülke
A novel factor controlling bistability in Bacillus subtilis: the YmdB protein affects flagellin expression and biofilm formation.
J Bacteriol: 2011, 193(21);5997-6007
[PubMed:21856853] [WorldCat.org] [DOI] (I p)

Martin Lehnik-Habrink, Marc Schaffer, Ulrike Mäder, Christine Diethmaier, Christina Herzberg, Jörg Stülke
RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y.
Mol Microbiol: 2011, 81(6);1459-73
[PubMed:21815947] [WorldCat.org] [DOI] (I p)

Vicki L Colledge, Mark J Fogg, Vladimir M Levdikov, Andrew Leech, Eleanor J Dodson, Anthony J Wilkinson
Structure and organisation of SinR, the master regulator of biofilm formation in Bacillus subtilis.
J Mol Biol: 2011, 411(3);597-613
[PubMed:21708175] [WorldCat.org] [DOI] (I p)

Yunrong Chai, Thomas Norman, Roberto Kolter, Richard Losick
Evidence that metabolism and chromosome copy number control mutually exclusive cell fates in Bacillus subtilis.
EMBO J: 2011, 30(7);1402-13
[PubMed:21326214] [WorldCat.org] [DOI] (I p)

Yunrong Chai, Roberto Kolter, Richard Losick
Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability.
Mol Microbiol: 2010, 78(1);218-29
[PubMed:20923420] [WorldCat.org] [DOI] (I p)

Yunrong Chai, Thomas Norman, Roberto Kolter, Richard Losick
An epigenetic switch governing daughter cell separation in Bacillus subtilis.
Genes Dev: 2010, 24(8);754-65
[PubMed:20351052] [WorldCat.org] [DOI] (I p)

Prashant Kodgire, K Krishnamurthy Rao
A dual mode of regulation of flgM by ScoC in Bacillus subtilis.
Can J Microbiol: 2009, 55(8);983-9
[PubMed:19898538] [WorldCat.org] [DOI] (I p)

Yunrong Chai, Roberto Kolter, Richard Losick
Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis.
Mol Microbiol: 2009, 74(4);876-87
[PubMed:19788541] [WorldCat.org] [DOI] (I p)

Yunrong Chai, Roberto Kolter, Richard Losick
A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation.
J Bacteriol: 2009, 191(8);2423-30
[PubMed:19201793] [WorldCat.org] [DOI] (I p)

Frances Chu, Daniel B Kearns, Anna McLoon, Yunrong Chai, Roberto Kolter, Richard Losick
A novel regulatory protein governing biofilm formation in Bacillus subtilis.
Mol Microbiol: 2008, 68(5);1117-27
[PubMed:18430133] [WorldCat.org] [DOI] (I p)

Yunrong Chai, Frances Chu, Roberto Kolter, Richard Losick
Bistability and biofilm formation in Bacillus subtilis.
Mol Microbiol: 2008, 67(2);254-63
[PubMed:18047568] [WorldCat.org] [DOI] (P p)

Prashant Kodgire, Madhulika Dixit, K Krishnamurthy Rao
ScoC and SinR negatively regulate epr by corepression in Bacillus subtilis.
J Bacteriol: 2006, 188(17);6425-8
[PubMed:16923912] [WorldCat.org] [DOI] (P p)

Steven S Branda, Frances Chu, Daniel B Kearns, Richard Losick, Roberto Kolter
A major protein component of the Bacillus subtilis biofilm matrix.
Mol Microbiol: 2006, 59(4);1229-38
[PubMed:16430696] [WorldCat.org] [DOI] (P p)

Frances Chu, Daniel B Kearns, Steven S Branda, Roberto Kolter, Richard Losick
Targets of the master regulator of biofilm formation in Bacillus subtilis.
Mol Microbiol: 2006, 59(4);1216-28
[PubMed:16430695] [WorldCat.org] [DOI] (P p)

Daniel B Kearns, Frances Chu, Steven S Branda, Roberto Kolter, Richard Losick
A master regulator for biofilm formation by Bacillus subtilis.
Mol Microbiol: 2005, 55(3);739-49
[PubMed:15661000] [WorldCat.org] [DOI] (P p)

Alejandro Sánchez, Jorge Olmos
Bacillus subtilis transcriptional regulators interaction.
Biotechnol Lett: 2004, 26(5);403-7
[PubMed:15104138] [WorldCat.org] [DOI] (P p)

Sasha H Shafikhani, Ines Mandic-Mulec, Mark A Strauch, Issar Smith, Terrance Leighton
Postexponential regulation of sin operon expression in Bacillus subtilis.
J Bacteriol: 2002, 184(2);564-71
[PubMed:11751836] [WorldCat.org] [DOI] (P p)

D J Scott, S Leejeerajumnean, J A Brannigan, R J Lewis, A J Wilkinson, J G Hoggett
Quaternary re-arrangement analysed by spectral enhancement: the interaction of a sporulation repressor with its antagonist.
J Mol Biol: 1999, 293(5);997-1004
[PubMed:10547280] [WorldCat.org] [DOI] (P p)

R J Lewis, J A Brannigan, W A Offen, I Smith, A J Wilkinson
An evolutionary link between sporulation and prophage induction in the structure of a repressor:anti-repressor complex.
J Mol Biol: 1998, 283(5);907-12
[PubMed:9799632] [WorldCat.org] [DOI] (P p)

M A Cervin, R J Lewis, J A Brannigan, G B Spiegelman
The Bacillus subtilis regulator SinR inhibits spoIIG promoter transcription in vitro without displacing RNA polymerase.
Nucleic Acids Res: 1998, 26(16);3806-12
[PubMed:9685500] [WorldCat.org] [DOI] (P p)

K Fredrick, J D Helmann
FlgM is a primary regulator of sigmaD activity, and its absence restores motility to a sinR mutant.
J Bacteriol: 1996, 178(23);7010-3
[PubMed:8955328] [WorldCat.org] [DOI] (P p)

M H Rashid, J Sekiguchi
flaD (sinR) mutations affect SigD-dependent functions at multiple points in Bacillus subtilis.
J Bacteriol: 1996, 178(22);6640-3
[PubMed:8932324] [WorldCat.org] [DOI] (P p)

J Hahn, A Luttinger, D Dubnau
Regulatory inputs for the synthesis of ComK, the competence transcription factor of Bacillus subtilis.
Mol Microbiol: 1996, 21(4);763-75
[PubMed:8878039] [WorldCat.org] [DOI] (P p)

P Margot, V Lazarevic, D Karamata
Effect of the SinR protein on the expression of the Bacillus subtilis 168 lytABC operon.
Microb Drug Resist: 1996, 2(1);119-21
[PubMed:9158733] [WorldCat.org] [DOI] (P p)

M A Strauch
In vitro binding affinity of the Bacillus subtilis AbrB protein to six different DNA target regions.
J Bacteriol: 1995, 177(15);4532-6
[PubMed:7635837] [WorldCat.org] [DOI] (P p)

U Bai, I Mandic-Mulec, I Smith
SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction.
Genes Dev: 1993, 7(1);139-48
[PubMed:8422983] [WorldCat.org] [DOI] (P p)

P T Kallio, J E Fagelson, J A Hoch, M A Strauch
The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein.
J Biol Chem: 1991, 266(20);13411-7
[PubMed:1906467] [WorldCat.org] (P p)

N K Gaur, K Cabane, I Smith
Structure and expression of the Bacillus subtilis sin operon.
J Bacteriol: 1988, 170(3);1046-53
[PubMed:3125149] [WorldCat.org] [DOI] (P p)