Difference between revisions of "SinR regulon"
(→Repression) |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 9: | Line 9: | ||
=== Repression === | === Repression === | ||
* ''[[aprE]]'' | * ''[[aprE]]'' | ||
+ | * ''[[degU]]'' | ||
* ''[[epr]]'' | * ''[[epr]]'' | ||
− | |||
* ''[[lutA]]-[[lutB]]-[[lutC]]'' | * ''[[lutA]]-[[lutB]]-[[lutC]]'' | ||
+ | * ''[[mstX]]'' | ||
* ''[[rapG]]'' | * ''[[rapG]]'' | ||
* ''[[rok]]'' | * ''[[rok]]'' | ||
Line 22: | Line 23: | ||
* ''[[spoVG]]'' | * ''[[spoVG]]'' | ||
* ''[[tapA]]-[[sipW]]-[[tasA]]'' | * ''[[tapA]]-[[sipW]]-[[tasA]]'' | ||
+ | * ''[[yugO]]'' | ||
* ''[[yvgN]]'' | * ''[[yvgN]]'' | ||
* ''[[ywbD]]'' | * ''[[ywbD]]'' | ||
+ | |||
+ | === Anti-activation (Prevention of binding of the activator protein [[RemA]]) === | ||
+ | * ''[[epsA]]-[[epsB]]-[[epsC]]-[[epsD]]-[[epsE]]-[[epsF]]-[[epsG]]-[[epsH]]-[[epsI]]-[[epsJ]]-[[epsK]]-[[epsL]]-[[epsM]]-[[epsN]]-[[epsO]]'' | ||
= Comments = | = Comments = | ||
* The [[SinR]] regulon is not expressed in ''[[rny]]'' and ''[[ymdB]]'' mutants {{PubMed|21856853,21815947}} | * The [[SinR]] regulon is not expressed in ''[[rny]]'' and ''[[ymdB]]'' mutants {{PubMed|21856853,21815947}} | ||
* Expression of the [[SinR regulon]] is enhanced upon [[SlrA]] overexpression, this can be suppressed by inactivation of either ''[[remA]]'', ''[[remB]]'', ''[[slrR]]'', or ''[[sinR]]'' {{PubMed|22329926}} | * Expression of the [[SinR regulon]] is enhanced upon [[SlrA]] overexpression, this can be suppressed by inactivation of either ''[[remA]]'', ''[[remB]]'', ''[[slrR]]'', or ''[[sinR]]'' {{PubMed|22329926}} | ||
+ | * Expression of the [[SinR regulon]] is enhanced in a ''[[rpsU]]'' mutant, this can be suppressed by inactivation of ''[[remA]]'' {{PubMed|25035996}} | ||
= Related ''Subti''Wiki pages= | = Related ''Subti''Wiki pages= | ||
Line 34: | Line 40: | ||
= Important publications on the [[SinR]] regulon = | = Important publications on the [[SinR]] regulon = | ||
− | <pubmed>18763711,19193632,17005971 19779461 19820159 20418391 20525796 20572937,21803996 21843271 22329926 21856853 21815947 16430695</pubmed> | + | <pubmed>18763711,19193632,17005971 19779461 19820159 20418391 20525796 20572937,21803996 21843271 22329926 21856853 21815947 25035996 16430695</pubmed> |
=Back to [[regulons]]= | =Back to [[regulons]]= |
Latest revision as of 14:29, 30 November 2014
Regulator | |
- SinR may act as transcriptional repressor at some promoters (as for the tapA promoter) and as anti-activator preventing binding of RemA for other operons (as is the case for the epsA promoter) PubMed
Contents
Genes in this regulon
Repression
- aprE
- degU
- epr
- lutA-lutB-lutC
- mstX
- rapG
- rok
- sigE
- sigF
- sigG
- slrR
- spoIIAA-spoIIAB
- spoIIGA
- spoVG
- tapA-sipW-tasA
- yugO
- yvgN
- ywbD
Anti-activation (Prevention of binding of the activator protein RemA)
Comments
- The SinR regulon is not expressed in rny and ymdB mutants PubMed
- Expression of the SinR regulon is enhanced upon SlrA overexpression, this can be suppressed by inactivation of either remA, remB, slrR, or sinR PubMed
- Expression of the SinR regulon is enhanced in a rpsU mutant, this can be suppressed by inactivation of remA PubMed
Related SubtiWiki pages
Important publications on the SinR regulon
Hiraku Takada, Masato Morita, Yuh Shiwa, Ryoma Sugimoto, Shota Suzuki, Fujio Kawamura, Hirofumi Yoshikawa
Cell motility and biofilm formation in Bacillus subtilis are affected by the ribosomal proteins, S11 and S21.
Biosci Biotechnol Biochem: 2014, 78(5);898-907
[PubMed:25035996]
[WorldCat.org]
[DOI]
(I p)
Loralyn M Cozy, Andrew M Phillips, Rebecca A Calvo, Ashley R Bate, Yi-Huang Hsueh, Richard Bonneau, Patrick Eichenberger, Daniel B Kearns
SlrA/SinR/SlrR inhibits motility gene expression upstream of a hypersensitive and hysteretic switch at the level of σ(D) in Bacillus subtilis.
Mol Microbiol: 2012, 83(6);1210-28
[PubMed:22329926]
[WorldCat.org]
[DOI]
(I p)
Christine Diethmaier, Nico Pietack, Katrin Gunka, Christoph Wrede, Martin Lehnik-Habrink, Christina Herzberg, Sebastian Hübner, Jörg Stülke
A novel factor controlling bistability in Bacillus subtilis: the YmdB protein affects flagellin expression and biofilm formation.
J Bacteriol: 2011, 193(21);5997-6007
[PubMed:21856853]
[WorldCat.org]
[DOI]
(I p)
Patrice Bruscella, Karen Shahbabian, Soumaya Laalami, Harald Putzer
RNase Y is responsible for uncoupling the expression of translation factor IF3 from that of the ribosomal proteins L35 and L20 in Bacillus subtilis.
Mol Microbiol: 2011, 81(6);1526-41
[PubMed:21843271]
[WorldCat.org]
[DOI]
(I p)
Martin Lehnik-Habrink, Marc Schaffer, Ulrike Mäder, Christine Diethmaier, Christina Herzberg, Jörg Stülke
RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y.
Mol Microbiol: 2011, 81(6);1459-73
[PubMed:21815947]
[WorldCat.org]
[DOI]
(I p)
Martin Lehnik-Habrink, Joseph Newman, Fabian M Rothe, Alexandra S Solovyova, Cecilia Rodrigues, Christina Herzberg, Fabian M Commichau, Richard J Lewis, Jörg Stülke
RNase Y in Bacillus subtilis: a Natively disordered protein that is the functional equivalent of RNase E from Escherichia coli.
J Bacteriol: 2011, 193(19);5431-41
[PubMed:21803996]
[WorldCat.org]
[DOI]
(I p)
Martin Lehnik-Habrink, Henrike Pförtner, Leonie Rempeters, Nico Pietack, Christina Herzberg, Jörg Stülke
The RNA degradosome in Bacillus subtilis: identification of CshA as the major RNA helicase in the multiprotein complex.
Mol Microbiol: 2010, 77(4);958-71
[PubMed:20572937]
[WorldCat.org]
[DOI]
(I p)
Irnov Irnov, Cynthia M Sharma, Jörg Vogel, Wade C Winkler
Identification of regulatory RNAs in Bacillus subtilis.
Nucleic Acids Res: 2010, 38(19);6637-51
[PubMed:20525796]
[WorldCat.org]
[DOI]
(I p)
Shiyi Yao, David H Bechhofer
Initiation of decay of Bacillus subtilis rpsO mRNA by endoribonuclease RNase Y.
J Bacteriol: 2010, 192(13);3279-86
[PubMed:20418391]
[WorldCat.org]
[DOI]
(I p)
Jessica C Zweers, Thomas Wiegert, Jan Maarten van Dijl
Stress-responsive systems set specific limits to the overproduction of membrane proteins in Bacillus subtilis.
Appl Environ Microbiol: 2009, 75(23);7356-64
[PubMed:19820159]
[WorldCat.org]
[DOI]
(I p)
Karen Shahbabian, Ailar Jamalli, Léna Zig, Harald Putzer
RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis.
EMBO J: 2009, 28(22);3523-33
[PubMed:19779461]
[WorldCat.org]
[DOI]
(I p)
Fabian M Commichau, Fabian M Rothe, Christina Herzberg, Eva Wagner, Daniel Hellwig, Martin Lehnik-Habrink, Elke Hammer, Uwe Völker, Jörg Stülke
Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing.
Mol Cell Proteomics: 2009, 8(6);1350-60
[PubMed:19193632]
[WorldCat.org]
[DOI]
(I p)
Hannes Hahne, Susanne Wolff, Michael Hecker, Dörte Becher
From complementarity to comprehensiveness--targeting the membrane proteome of growing Bacillus subtilis by divergent approaches.
Proteomics: 2008, 8(19);4123-36
[PubMed:18763711]
[WorldCat.org]
[DOI]
(I p)
Alison Hunt, Joy P Rawlins, Helena B Thomaides, Jeff Errington
Functional analysis of 11 putative essential genes in Bacillus subtilis.
Microbiology (Reading): 2006, 152(Pt 10);2895-2907
[PubMed:17005971]
[WorldCat.org]
[DOI]
(P p)
Frances Chu, Daniel B Kearns, Steven S Branda, Roberto Kolter, Richard Losick
Targets of the master regulator of biofilm formation in Bacillus subtilis.
Mol Microbiol: 2006, 59(4);1216-28
[PubMed:16430695]
[WorldCat.org]
[DOI]
(P p)