Difference between revisions of "SubtInteract"
Line 1: | Line 1: | ||
Protein-protein interactions are essential for many activities of any living cell. These interactions involve multi-protein complexes that take part in central processes such as [[DNA replication]], [[transcription]] or [[translation]]. Protein-protein interactions may also be involved in a variety of regulatory events. Metabolic enzymes do often form transien complexes that represent a complete pathways. These complexes are called metabolon. Finally, many interactions may be of a transient nature. | Protein-protein interactions are essential for many activities of any living cell. These interactions involve multi-protein complexes that take part in central processes such as [[DNA replication]], [[transcription]] or [[translation]]. Protein-protein interactions may also be involved in a variety of regulatory events. Metabolic enzymes do often form transien complexes that represent a complete pathways. These complexes are called metabolon. Finally, many interactions may be of a transient nature. | ||
+ | |||
+ | <br/> | ||
+ | <big>'''Now online: A description of ''Subti''Wiki, ''Subti''Pathways, and ''Subt''Interact in the 2012 Database issue of Nucleic Acids Research'''</big> | ||
+ | <pubmed> 22096228 </pubmed> | ||
=Methods to detect protein-protein interactions= | =Methods to detect protein-protein interactions= |
Revision as of 13:38, 19 November 2011
Protein-protein interactions are essential for many activities of any living cell. These interactions involve multi-protein complexes that take part in central processes such as DNA replication, transcription or translation. Protein-protein interactions may also be involved in a variety of regulatory events. Metabolic enzymes do often form transien complexes that represent a complete pathways. These complexes are called metabolon. Finally, many interactions may be of a transient nature.
Now online: A description of SubtiWiki, SubtiPathways, and SubtInteract in the 2012 Database issue of Nucleic Acids Research
Ulrike Mäder, Arne G Schmeisky, Lope A Flórez, Jörg Stülke
SubtiWiki--a comprehensive community resource for the model organism Bacillus subtilis.
Nucleic Acids Res: 2012, 40(Database issue);D1278-87
[PubMed:22096228]
[WorldCat.org]
[DOI]
(I p)
Contents
- 1 Methods to detect protein-protein interactions
- 2 Visualization of protein-protein interactions in B. subtilis
- 3 Protein complexes in B. subtilis
- 4 Suspected hub proteins potentially involved in a large number of interactions (as deduced from a Yeast two-hybrid analysis)
- 5 Important publications
Methods to detect protein-protein interactions
- Yeast Two Hybrid System PubMed
- TAP-Tag purification PubMed
Attention: Each technique detects only about 33% of all interactions PubMed
Visualization of protein-protein interactions in B. subtilis
- interactive protein-protein interaction map
- the beta version of SubtInteract
Protein complexes in B. subtilis
Complexes in Cellular processes
cell wall synthesis and cell shape: the cell wall biosynthetic complex
cell division: the divisome
Complexes in Metabolism
the metabolons of glycolysis and the TCA cycle PubMed
Complexes in Information processing
DNA replication: the replisome
transcription: RNA polymerase
translation: the ribosome
synthesis of glutamyl-tRNA(Gln): the transamidosome (GatA-GatB-GatC)-GltX-trnS-Gln
RNA processing and degradation: the RNA degradosome
Complexes involved in Lifestyles
general stress response: the stressosome
DNA uptake: the pseudopilus PubMed
spore germination: the germinosome
Suspected hub proteins potentially involved in a large number of interactions (as deduced from a Yeast two-hybrid analysis)
- FruA, SwrC, XhlA, YhaP, YhgE, YkcC, YqfF, CsbC, CssS, FliZ, MreD, PpsC, RacA, Smc, YclI, YdeL, YdgH, YdbI, YesS, YkoT, YopZ, YqbD, YtdP, YueB, YwqJ, YyxA
Important publications