Difference between revisions of "Biofilm formation"
(→Key reviews) |
(→Important original publications) |
||
(75 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | Biofilms are the result of the multicellular lifestyle of ''B. subtilis''. They are characterized by the formation of a matrix polysaccharide and an amyloid-like protein, [[TasA]]. Correction of ''[[sfp]]'', ''[[epsC]]'','' [[swrAA]]'', and ''[[degQ]]'' as well as introduction of ''rapP'' from a plasmid present in NCIB3610 results in biofilm formation in ''B. subtilis'' 168 {{PubMed|21278284}}. | + | Biofilms are the result of the multicellular lifestyle of ''B. subtilis''. They are characterized by the formation of a matrix polysaccharide (poly-N-acetyl glucosamine as a major polysaccharide {{PubMed|26078454}}) and an amyloid-like protein, [[TasA]]. Correction of ''[[sfp]]'', ''[[epsC]]'','' [[swrAA]]'', and ''[[degQ]]'' as well as introduction of ''rapP'' from a plasmid present in NCIB3610 results in biofilm formation in ''B. subtilis'' 168 {{PubMed|21278284}}. |
Line 8: | Line 8: | ||
|Neighbours= | |Neighbours= | ||
* 4.1.1. [[Motility and chemotaxis]] | * 4.1.1. [[Motility and chemotaxis]] | ||
− | * 4.1.2. [[Biofilm formation]] | + | * 4.1.2. [[Swarming]] |
− | * 4.1. | + | * 4.1.3. [[Sliding]] |
+ | * 4.1.4. [[Biofilm formation]] | ||
+ | * 4.1.5. [[Genetic competence]] | ||
|Related= | |Related= | ||
[[SinR regulon]] | [[SinR regulon]] | ||
Line 19: | Line 21: | ||
==Labs working on biofilm formation== | ==Labs working on biofilm formation== | ||
+ | * [[Roberto Grau]] | ||
* [[Daniel Kearns]] | * [[Daniel Kearns]] | ||
+ | * [[Roberto Kolter]] | ||
+ | * [[Akos T Kovacs]] | ||
* [[Oscar Kuipers]] | * [[Oscar Kuipers]] | ||
* [[Beth Lazazzera]] | * [[Beth Lazazzera]] | ||
* [[Richard Losick]] | * [[Richard Losick]] | ||
+ | * [[Eric Raspaud]] | ||
* [[Nicola Stanley-Wall]] | * [[Nicola Stanley-Wall]] | ||
+ | * [[Jörg Stülke]] | ||
==Key genes and operons involved in biofilm formation== | ==Key genes and operons involved in biofilm formation== | ||
− | * matrix polysaccharide synthesis: | + | * matrix polysaccharide synthesis {{PubMed|26078454}}: |
** ''[[epsA]]-[[epsB]]-[[epsC]]-[[epsD]]-[[epsE]]-[[epsF]]-[[epsG]]-[[epsH]]-[[epsI]]-[[epsJ]]-[[epsK]]-[[epsL]]-[[epsM]]-[[epsN]]-[[epsO]]'' | ** ''[[epsA]]-[[epsB]]-[[epsC]]-[[epsD]]-[[epsE]]-[[epsF]]-[[epsG]]-[[epsH]]-[[epsI]]-[[epsJ]]-[[epsK]]-[[epsL]]-[[epsM]]-[[epsN]]-[[epsO]]'' | ||
+ | **'' [[galE]]'' | ||
* amyloid protein synthesis, secretion and assembly | * amyloid protein synthesis, secretion and assembly | ||
** ''[[tapA]]-[[sipW]]-[[tasA]]'' | ** ''[[tapA]]-[[sipW]]-[[tasA]]'' | ||
+ | * repellent surface layer | ||
+ | ** ''[[bslA]]'' | ||
* regulation | * regulation | ||
** [[SlrR]] | ** [[SlrR]] | ||
Line 35: | Line 45: | ||
** [[SinR]] | ** [[SinR]] | ||
** [[SinI]] | ** [[SinI]] | ||
+ | ** [[KinC]] | ||
+ | ** [[KinD]] | ||
+ | ** [[Spo0A]] | ||
** [[PtkA]] | ** [[PtkA]] | ||
** [[TkmA]] | ** [[TkmA]] | ||
Line 40: | Line 53: | ||
** [[DegU]] | ** [[DegU]] | ||
** [[DegQ]] | ** [[DegQ]] | ||
− | ** [[ | + | ** [[YmdB]] |
− | * | + | ** [[FtsH]] |
− | ** [[ | + | ** [[Veg]] |
+ | ** [[MstX]] | ||
+ | ** [[YugO]] | ||
+ | |||
* other proteins required for biofilm formation | * other proteins required for biofilm formation | ||
** [[AmpS]] | ** [[AmpS]] | ||
Line 49: | Line 65: | ||
** [[RemA]] | ** [[RemA]] | ||
** [[RemB]] | ** [[RemB]] | ||
+ | ** [[Rny]] | ||
** [[Sfp/1]] | ** [[Sfp/1]] | ||
** [[Sfp/2]] | ** [[Sfp/2]] | ||
** [[SpeA]] | ** [[SpeA]] | ||
+ | ** [[SpeD]] | ||
** [[SwrAA]] | ** [[SwrAA]] | ||
** [[YisP]] | ** [[YisP]] | ||
** [[YlbF]] | ** [[YlbF]] | ||
** [[YmcA]] | ** [[YmcA]] | ||
− | |||
** [[YvcA]] | ** [[YvcA]] | ||
** [[YwcC]] | ** [[YwcC]] | ||
** [[YxaB]] | ** [[YxaB]] | ||
+ | |||
+ | * other proteins required for efficient pellicle biofilm formation (mutant is out-competed by wild type) | ||
+ | ** [[Hag]] | ||
+ | ** [[FlgE]] | ||
+ | ** [[FliF]] | ||
+ | ** [[MotA]] | ||
+ | ** [[SigD]] | ||
+ | ** [[CheA]] | ||
+ | ** [[CheY]] | ||
+ | ** [[CheD]] | ||
+ | ** [[CheV]] | ||
+ | ** [[HemAT]] | ||
==Important original publications== | ==Important original publications== | ||
− | <pubmed> 21267464 21278284 16091050 </pubmed> | + | <pubmed> 26122431, 26588577, 26152584, 26078454 25870300 26060272 25825426 23271809, 23300252 21267464 21278284 16091050 22232655 22371091 23341623 23406351 25768534 23012477,22934631 23517761 23569226 23564171 25035996 23637960 23645570 24256735 25422306 25680358 25713360 25894589 26200335 26873313 30297741 28462927,31113899 |
+ | </pubmed> | ||
==Key reviews== | ==Key reviews== | ||
− | + | <pubmed>16787201,24771632, 9891794,19054118,20890834,21109420,20519345,18381896 22024380 20735481 23353768 23791621 23927648 24384602 24909922 26104716 24988880 24608334 25907113,30218468</pubmed> | |
− | <pubmed>16787201,9891794,19054118,20890834,21109420,20519345,18381896</pubmed> | ||
=Back to [[categories]]= | =Back to [[categories]]= |
Latest revision as of 08:49, 24 May 2019
Biofilms are the result of the multicellular lifestyle of B. subtilis. They are characterized by the formation of a matrix polysaccharide (poly-N-acetyl glucosamine as a major polysaccharide PubMed) and an amyloid-like protein, TasA. Correction of sfp, epsC, swrAA, and degQ as well as introduction of rapP from a plasmid present in NCIB3610 results in biofilm formation in B. subtilis 168 PubMed.
Parent categories | |
Neighbouring categories |
|
Related categories | |
Contents
Biofilm formation in SubtiPathways
Labs working on biofilm formation
- Roberto Grau
- Daniel Kearns
- Roberto Kolter
- Akos T Kovacs
- Oscar Kuipers
- Beth Lazazzera
- Richard Losick
- Eric Raspaud
- Nicola Stanley-Wall
- Jörg Stülke
Key genes and operons involved in biofilm formation
- matrix polysaccharide synthesis PubMed:
- amyloid protein synthesis, secretion and assembly
- repellent surface layer
- regulation
- other proteins required for biofilm formation
- other proteins required for efficient pellicle biofilm formation (mutant is out-competed by wild type)
Important original publications
Key reviews
Margarita Kalamara, Mihael Spacapan, Ines Mandic-Mulec, Nicola R Stanley-Wall
Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond.
Mol Microbiol: 2018, 110(6);863-878
[PubMed:30218468]
[WorldCat.org]
[DOI]
(I p)
Jordi van Gestel, Hera Vlamakis, Roberto Kolter
Division of Labor in Biofilms: the Ecology of Cell Differentiation.
Microbiol Spectr: 2015, 3(2);MB-0002-2014
[PubMed:26104716]
[WorldCat.org]
[DOI]
(I p)
Laura Hobley, Catriona Harkins, Cait E MacPhee, Nicola R Stanley-Wall
Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes.
FEMS Microbiol Rev: 2015, 39(5);649-69
[PubMed:25907113]
[WorldCat.org]
[DOI]
(I p)
Lynne S Cairns, Laura Hobley, Nicola R Stanley-Wall
Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms.
Mol Microbiol: 2014, 93(4);587-98
[PubMed:24988880]
[WorldCat.org]
[DOI]
(I p)
Benjamin Mielich-Süss, Daniel Lopez
Molecular mechanisms involved in Bacillus subtilis biofilm formation.
Environ Microbiol: 2015, 17(3);555-65
[PubMed:24909922]
[WorldCat.org]
[DOI]
(I p)
Eisha Mhatre, Ramses Gallegos Monterrosa, Akos T Kovács
From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria.
J Basic Microbiol: 2014, 54(7);616-32
[PubMed:24771632]
[WorldCat.org]
[DOI]
(I p)
Dennis Claessen, Daniel E Rozen, Oscar P Kuipers, Lotte Søgaard-Andersen, Gilles P van Wezel
Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies.
Nat Rev Microbiol: 2014, 12(2);115-24
[PubMed:24384602]
[WorldCat.org]
[DOI]
(I p)
Robert Belas
When the swimming gets tough, the tough form a biofilm.
Mol Microbiol: 2013, 90(1);1-5
[PubMed:23927648]
[WorldCat.org]
[DOI]
(I p)
Diego Romero
Bacterial determinants of the social behavior of Bacillus subtilis.
Res Microbiol: 2013, 164(7);788-98
[PubMed:23791621]
[WorldCat.org]
[DOI]
(I p)
Hera Vlamakis, Yunrong Chai, Pascale Beauregard, Richard Losick, Roberto Kolter
Sticking together: building a biofilm the Bacillus subtilis way.
Nat Rev Microbiol: 2013, 11(3);157-68
[PubMed:23353768]
[WorldCat.org]
[DOI]
(I p)
Elizabeth Anne Shank, Roberto Kolter
Extracellular signaling and multicellularity in Bacillus subtilis.
Curr Opin Microbiol: 2011, 14(6);741-7
[PubMed:22024380]
[WorldCat.org]
[DOI]
(I p)
Tjakko Abee, Akos T Kovács, Oscar P Kuipers, Stijn van der Veen
Biofilm formation and dispersal in Gram-positive bacteria.
Curr Opin Biotechnol: 2011, 22(2);172-9
[PubMed:21109420]
[WorldCat.org]
[DOI]
(I p)
Roberto Kolter
Biofilms in lab and nature: a molecular geneticist's voyage to microbial ecology.
Int Microbiol: 2010, 13(1);1-7
[PubMed:20890834]
[WorldCat.org]
[DOI]
(I p)
Massimiliano Marvasi, Pieter T Visscher, Lilliam Casillas Martinez
Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis.
FEMS Microbiol Lett: 2010, 313(1);1-9
[PubMed:20735481]
[WorldCat.org]
[DOI]
(I p)
Daniel López, Hera Vlamakis, Roberto Kolter
Biofilms.
Cold Spring Harb Perspect Biol: 2010, 2(7);a000398
[PubMed:20519345]
[WorldCat.org]
[DOI]
(I p)
Daniel Lopez, Hera Vlamakis, Roberto Kolter
Generation of multiple cell types in Bacillus subtilis.
FEMS Microbiol Rev: 2009, 33(1);152-63
[PubMed:19054118]
[WorldCat.org]
[DOI]
(P p)
Hera Vlamakis, Claudio Aguilar, Richard Losick, Roberto Kolter
Control of cell fate by the formation of an architecturally complex bacterial community.
Genes Dev: 2008, 22(7);945-53
[PubMed:18381896]
[WorldCat.org]
[DOI]
(P p)
Wolf-Rainer Abraham
Controlling biofilms of gram-positive pathogenic bacteria.
Curr Med Chem: 2006, 13(13);1509-24
[PubMed:16787201]
[WorldCat.org]
[DOI]
(P p)
J A Shapiro
Thinking about bacterial populations as multicellular organisms.
Annu Rev Microbiol: 1998, 52;81-104
[PubMed:9891794]
[WorldCat.org]
[DOI]
(P p)