Difference between revisions of "Biofilm formation"

From SubtiWiki
Jump to: navigation, search
(Important original publications)
Line 1: Line 1:
Biofilms are the result of the multicellular lifestyle of ''B. subtilis''. They are characterized by the formation of a matrix polysaccharide and an amyloid-like protein, [[TasA]]. Correction of ''[[sfp]]'', ''[[epsC]]'','' [[swrAA]]'', and ''[[degQ]]'' as well as introduction of ''rapP'' from a plasmid present in NCIB3610 results in biofilm formation in ''B. subtilis'' 168 {{PubMed|21278284}}.
+
Biofilms are the result of the multicellular lifestyle of ''B. subtilis''. They are characterized by the formation of a matrix polysaccharide (poly-N-acetyl glucosamine as a major polysaccharide {{PubMed|26078454}}) and an amyloid-like protein, [[TasA]]. Correction of ''[[sfp]]'', ''[[epsC]]'','' [[swrAA]]'', and ''[[degQ]]'' as well as introduction of ''rapP'' from a plasmid present in NCIB3610 results in biofilm formation in ''B. subtilis'' 168 {{PubMed|21278284}}.
  
  
Line 31: Line 31:
  
 
==Key genes and operons involved in biofilm  formation==
 
==Key genes and operons involved in biofilm  formation==
* matrix polysaccharide synthesis:  
+
* matrix polysaccharide synthesis {{PubMed|26078454}}:  
 
** ''[[epsA]]-[[epsB]]-[[epsC]]-[[epsD]]-[[epsE]]-[[epsF]]-[[epsG]]-[[epsH]]-[[epsI]]-[[epsJ]]-[[epsK]]-[[epsL]]-[[epsM]]-[[epsN]]-[[epsO]]''
 
** ''[[epsA]]-[[epsB]]-[[epsC]]-[[epsD]]-[[epsE]]-[[epsF]]-[[epsG]]-[[epsH]]-[[epsI]]-[[epsJ]]-[[epsK]]-[[epsL]]-[[epsM]]-[[epsN]]-[[epsO]]''
 
**'' [[galE]]''
 
**'' [[galE]]''
Line 77: Line 77:
  
 
==Important original publications==
 
==Important original publications==
<pubmed> 25870300 26060272 25825426 23271809, 23300252 21267464 21278284 16091050 22232655 22371091 23341623 23406351 25768534 23012477,22934631 23517761 23569226 23564171 25035996 23637960 23645570 24256735 25422306 25680358 25713360 25894589</pubmed>
+
<pubmed> 26078454 25870300 26060272 25825426 23271809, 23300252 21267464 21278284 16091050 22232655 22371091 23341623 23406351 25768534 23012477,22934631 23517761 23569226 23564171 25035996 23637960 23645570 24256735 25422306 25680358 25713360 25894589</pubmed>
  
 
==Key reviews==
 
==Key reviews==

Revision as of 10:57, 17 June 2015

Biofilms are the result of the multicellular lifestyle of B. subtilis. They are characterized by the formation of a matrix polysaccharide (poly-N-acetyl glucosamine as a major polysaccharide PubMed) and an amyloid-like protein, TasA. Correction of sfp, epsC, swrAA, and degQ as well as introduction of rapP from a plasmid present in NCIB3610 results in biofilm formation in B. subtilis 168 PubMed.


Parent categories
Neighbouring categories
Related categories

SinR regulon




Biofilm formation in SubtiPathways

Labs working on biofilm formation

Key genes and operons involved in biofilm formation

Important original publications

Damien Roux, Colette Cywes-Bentley, Yi-Fan Zhang, Stephanie Pons, Melissa Konkol, Daniel B Kearns, Dustin J Little, P Lynne Howell, David Skurnik, Gerald B Pier
Identification of Poly-N-acetylglucosamine as a Major Polysaccharide Component of the Bacillus subtilis Biofilm Matrix.
J Biol Chem: 2015, 290(31);19261-72
[PubMed:26078454] [WorldCat.org] [DOI] (I p)

Yun Chen, Kevin Gozzi, Fang Yan, Yunrong Chai
Acetic Acid Acts as a Volatile Signal To Stimulate Bacterial Biofilm Formation.
mBio: 2015, 6(3);e00392
[PubMed:26060272] [WorldCat.org] [DOI] (I e)

Jordi van Gestel, Hera Vlamakis, Roberto Kolter
From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate.
PLoS Biol: 2015, 13(4);e1002141
[PubMed:25894589] [WorldCat.org] [DOI] (I e)

Keith M Bromley, Ryan J Morris, Laura Hobley, Giovanni Brandani, Rachel M C Gillespie, Matthew McCluskey, Ulrich Zachariae, Davide Marenduzzo, Nicola R Stanley-Wall, Cait E MacPhee
Interfacial self-assembly of a bacterial hydrophobin.
Proc Natl Acad Sci U S A: 2015, 112(17);5419-24
[PubMed:25870300] [WorldCat.org] [DOI] (I p)

Matthew J Powers, Edgardo Sanabria-Valentín, Albert A Bowers, Elizabeth A Shank
Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens.
J Bacteriol: 2015, 197(13);2129-2138
[PubMed:25825426] [WorldCat.org] [DOI] (I p)

D R Espeso, A Carpio, B Einarsson
Differential growth of wrinkled biofilms.
Phys Rev E Stat Nonlin Soft Matter Phys: 2015, 91(2);022710
[PubMed:25768534] [WorldCat.org] [DOI] (I p)

Rachel Bleich, Jeramie D Watrous, Pieter C Dorrestein, Albert A Bowers, Elizabeth A Shank
Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis.
Proc Natl Acad Sci U S A: 2015, 112(10);3086-91
[PubMed:25713360] [WorldCat.org] [DOI] (I p)

Shaul Pollak, Shira Omer Bendori, Avigdor Eldar
A complex path for domestication of B. subtilis sociality.
Curr Genet: 2015, 61(4);493-6
[PubMed:25680358] [WorldCat.org] [DOI] (I p)

Shira Omer Bendori, Shaul Pollak, Dorit Hizi, Avigdor Eldar
The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP.
J Bacteriol: 2015, 197(3);592-602
[PubMed:25422306] [WorldCat.org] [DOI] (I p)

Hiraku Takada, Masato Morita, Yuh Shiwa, Ryoma Sugimoto, Shota Suzuki, Fujio Kawamura, Hirofumi Yoshikawa
Cell motility and biofilm formation in Bacillus subtilis are affected by the ribosomal proteins, S11 and S21.
Biosci Biotechnol Biochem: 2014, 78(5);898-907
[PubMed:25035996] [WorldCat.org] [DOI] (I p)

Thomas M Norman, Nathan D Lord, Johan Paulsson, Richard Losick
Memory and modularity in cell-fate decision making.
Nature: 2013, 503(7477);481-486
[PubMed:24256735] [WorldCat.org] [DOI] (I p)

Fernando Gómez-Aguado, María Teresa Corcuera, María Luisa Gómez-Lus, María Antonia de la Parte, Carmen Ramos, César García-Rey, María José Alonso, José Prieto
Histological approach to Bacillus subtilis colony-biofilm: evolving internal architecture and sporulation dynamics.
Histol Histopathol: 2013, 28(10);1351-60
[PubMed:23645570] [WorldCat.org] [DOI] (I p)

Iztok Dogsa, Mojca Brloznik, David Stopar, Ines Mandic-Mulec
Exopolymer diversity and the role of levan in Bacillus subtilis biofilms.
PLoS One: 2013, 8(4);e62044
[PubMed:23637960] [WorldCat.org] [DOI] (I e)

Pascale B Beauregard, Yunrong Chai, Hera Vlamakis, Richard Losick, Roberto Kolter
Bacillus subtilis biofilm induction by plant polysaccharides.
Proc Natl Acad Sci U S A: 2013, 110(17);E1621-30
[PubMed:23569226] [WorldCat.org] [DOI] (I p)

Moshe Shemesh, Yunrong Chai
A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling.
J Bacteriol: 2013, 195(12);2747-54
[PubMed:23564171] [WorldCat.org] [DOI] (I p)

A Bridier, T Meylheuc, R Briandet
Realistic representation of Bacillus subtilis biofilms architecture using combined microscopy (CLSM, ESEM and FESEM).
Micron: 2013, 48;65-9
[PubMed:23517761] [WorldCat.org] [DOI] (I p)

Thomas Böttcher, Ilana Kolodkin-Gal, Roberto Kolter, Richard Losick, Jon Clardy
Synthesis and activity of biomimetic biofilm disruptors.
J Am Chem Soc: 2013, 135(8);2927-30
[PubMed:23406351] [WorldCat.org] [DOI] (I p)

Miguel Trejo, Carine Douarche, Virginie Bailleux, Christophe Poulard, Sandrine Mariot, Christophe Regeard, Eric Raspaud
Elasticity and wrinkled morphology of Bacillus subtilis pellicles.
Proc Natl Acad Sci U S A: 2013, 110(6);2011-6
[PubMed:23341623] [WorldCat.org] [DOI] (I p)

James N Wilking, Vasily Zaburdaev, Michael De Volder, Richard Losick, Michael P Brenner, David A Weitz
Liquid transport facilitated by channels in Bacillus subtilis biofilms.
Proc Natl Acad Sci U S A: 2013, 110(3);848-52
[PubMed:23271809] [WorldCat.org] [DOI] (I p)

Munehiro Asally, Mark Kittisopikul, Pau Rué, Yingjie Du, Zhenxing Hu, Tolga Çağatay, Andra B Robinson, Hongbing Lu, Jordi Garcia-Ojalvo, Gürol M Süel
Localized cell death focuses mechanical forces during 3D patterning in a biofilm.
Proc Natl Acad Sci U S A: 2012, 109(46);18891-6
[PubMed:23012477] [WorldCat.org] [DOI] (I p)

Yun Chen, Fang Yan, Yunrong Chai, Hongxia Liu, Roberto Kolter, Richard Losick, Jian-Hua Guo
Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation.
Environ Microbiol: 2013, 15(3);848-864
[PubMed:22934631] [WorldCat.org] [DOI] (I p)

Juan C Garcia-Betancur, Ana Yepes, Johannes Schneider, Daniel Lopez
Single-cell analysis of Bacillus subtilis biofilms using fluorescence microscopy and flow cytometry.
J Vis Exp: 2012, (60);
[PubMed:22371091] [WorldCat.org] [DOI] (I e)

Agnese Seminara, Thomas E Angelini, James N Wilking, Hera Vlamakis, Senan Ebrahim, Roberto Kolter, David A Weitz, Michael P Brenner
Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix.
Proc Natl Acad Sci U S A: 2012, 109(4);1116-21
[PubMed:22232655] [WorldCat.org] [DOI] (I p)

Anna L McLoon, Sarah B Guttenplan, Daniel B Kearns, Roberto Kolter, Richard Losick
Tracing the domestication of a biofilm-forming bacterium.
J Bacteriol: 2011, 193(8);2027-34
[PubMed:21278284] [WorldCat.org] [DOI] (I p)

Arnaud Bridier, Dominique Le Coq, Florence Dubois-Brissonnet, Vincent Thomas, Stéphane Aymerich, Romain Briandet
The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging.
PLoS One: 2011, 6(1);e16177
[PubMed:21267464] [WorldCat.org] [DOI] (I e)

Nicola R Stanley, Beth A Lazazzera
Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation.
Mol Microbiol: 2005, 57(4);1143-58
[PubMed:16091050] [WorldCat.org] [DOI] (P p)


Key reviews

Laura Hobley, Catriona Harkins, Cait E MacPhee, Nicola R Stanley-Wall
Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes.
FEMS Microbiol Rev: 2015, 39(5);649-69
[PubMed:25907113] [WorldCat.org] [DOI] (I p)

Lynne S Cairns, Laura Hobley, Nicola R Stanley-Wall
Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms.
Mol Microbiol: 2014, 93(4);587-98
[PubMed:24988880] [WorldCat.org] [DOI] (I p)

Benjamin Mielich-Süss, Daniel Lopez
Molecular mechanisms involved in Bacillus subtilis biofilm formation.
Environ Microbiol: 2015, 17(3);555-65
[PubMed:24909922] [WorldCat.org] [DOI] (I p)

Eisha Mhatre, Ramses Gallegos Monterrosa, Akos T Kovács
From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria.
J Basic Microbiol: 2014, 54(7);616-32
[PubMed:24771632] [WorldCat.org] [DOI] (I p)

Dennis Claessen, Daniel E Rozen, Oscar P Kuipers, Lotte Søgaard-Andersen, Gilles P van Wezel
Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies.
Nat Rev Microbiol: 2014, 12(2);115-24
[PubMed:24384602] [WorldCat.org] [DOI] (I p)

Robert Belas
When the swimming gets tough, the tough form a biofilm.
Mol Microbiol: 2013, 90(1);1-5
[PubMed:23927648] [WorldCat.org] [DOI] (I p)

Diego Romero
Bacterial determinants of the social behavior of Bacillus subtilis.
Res Microbiol: 2013, 164(7);788-98
[PubMed:23791621] [WorldCat.org] [DOI] (I p)

Hera Vlamakis, Yunrong Chai, Pascale Beauregard, Richard Losick, Roberto Kolter
Sticking together: building a biofilm the Bacillus subtilis way.
Nat Rev Microbiol: 2013, 11(3);157-68
[PubMed:23353768] [WorldCat.org] [DOI] (I p)

Elizabeth Anne Shank, Roberto Kolter
Extracellular signaling and multicellularity in Bacillus subtilis.
Curr Opin Microbiol: 2011, 14(6);741-7
[PubMed:22024380] [WorldCat.org] [DOI] (I p)

Tjakko Abee, Akos T Kovács, Oscar P Kuipers, Stijn van der Veen
Biofilm formation and dispersal in Gram-positive bacteria.
Curr Opin Biotechnol: 2011, 22(2);172-9
[PubMed:21109420] [WorldCat.org] [DOI] (I p)

Roberto Kolter
Biofilms in lab and nature: a molecular geneticist's voyage to microbial ecology.
Int Microbiol: 2010, 13(1);1-7
[PubMed:20890834] [WorldCat.org] [DOI] (I p)

Massimiliano Marvasi, Pieter T Visscher, Lilliam Casillas Martinez
Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis.
FEMS Microbiol Lett: 2010, 313(1);1-9
[PubMed:20735481] [WorldCat.org] [DOI] (I p)

Daniel López, Hera Vlamakis, Roberto Kolter
Biofilms.
Cold Spring Harb Perspect Biol: 2010, 2(7);a000398
[PubMed:20519345] [WorldCat.org] [DOI] (I p)

Daniel Lopez, Hera Vlamakis, Roberto Kolter
Generation of multiple cell types in Bacillus subtilis.
FEMS Microbiol Rev: 2009, 33(1);152-63
[PubMed:19054118] [WorldCat.org] [DOI] (P p)

Hera Vlamakis, Claudio Aguilar, Richard Losick, Roberto Kolter
Control of cell fate by the formation of an architecturally complex bacterial community.
Genes Dev: 2008, 22(7);945-53
[PubMed:18381896] [WorldCat.org] [DOI] (P p)

Wolf-Rainer Abraham
Controlling biofilms of gram-positive pathogenic bacteria.
Curr Med Chem: 2006, 13(13);1509-24
[PubMed:16787201] [WorldCat.org] [DOI] (P p)

J A Shapiro
Thinking about bacterial populations as multicellular organisms.
Annu Rev Microbiol: 1998, 52;81-104
[PubMed:9891794] [WorldCat.org] [DOI] (P p)


Back to categories