Difference between revisions of "RecA"

From SubtiWiki
Jump to: navigation, search
(Extended information on the protein)
Line 102: Line 102:
  
 
* '''[[Localization]]:'''  
 
* '''[[Localization]]:'''  
** colocalizes to the [[replisome]] in response to endogenous and exogenous DNA damage {{PubMed|24891441}}
+
** colocalizes to the [[replisome]] in response to endogenous and exogenous DNA damage and in response to damage-independent fork arrest (formation of DNA repair centers) {{PubMed|24891441}}
 
** Nucleoid (Mid-cell) [http://www.ncbi.nlm.nih.gov/sites/entrez/16479537 PubMed]
 
** Nucleoid (Mid-cell) [http://www.ncbi.nlm.nih.gov/sites/entrez/16479537 PubMed]
 
** localizes to one cell pole {{PubMed|21278288}}
 
** localizes to one cell pole {{PubMed|21278288}}

Revision as of 10:51, 4 June 2014

  • Description: multifunctional protein involved in homologous recombination and DNA repair (LexA-autocleavage)

Gene name recA
Synonyms recE
Essential no
Product multifunctional protein involved in homologous
recombination and DNA repair (LexA-autocleavage)
Function DNA repair/ recombination
Gene expression levels in SubtiExpress: recA
Interactions involving this protein in SubtInteract: RecA
MW, pI 37 kDa, 4.883
Gene length, protein length 1041 bp, 347 aa
Immediate neighbours cinA, pbpX
Sequences Protein DNA DNA_with_flanks
Genetic context
RecA context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
RecA expression.png
















Categories containing this gene/protein

DNA repair/ recombination, genetic competence, phosphoproteins, most abundant proteins

This gene is a member of the following regulons

ComK regulon, LexA regulon

The gene

Basic information

  • Locus tag: BSU16940

Phenotypes of a mutant

  • drastically reduced survival of mature dormant spores after exposure to ultrahigh vacuum desiccation and ionizing radiation that induce single strand (ss) DNA nicks and double-strand breaks (DSBs) PubMed

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

RecA filaments are dismantled from DNA by PcrA PubMed

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
    • RecA stimulates ssDNA phosphorylase activity of PnpA PubMed
  • Protein family: recA family (according to Swiss-Prot)
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Effectors of protein activity:
  • Localization:
    • colocalizes to the replisome in response to endogenous and exogenous DNA damage and in response to damage-independent fork arrest (formation of DNA repair centers) PubMed
    • Nucleoid (Mid-cell) PubMed
    • localizes to one cell pole PubMed
    • forms a transient, mobile focus associated with the chromosome during spore development PubMed

Database entries

  • Structure: 1U94 (RecA from E. coli, 62% identity, 86% similarity)
  • KEGG entry: [3]
  • E.C. number:

Additional information

Expression and regulation

  • Regulation:
    • induced by DNA damage (LexA) PubMed
    • induced by conditions that trigger development of genetic competence (ComK) PubMed
  • Additional information:
    • belongs to the 100 most abundant proteins PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium): 417 PubMed
    • number of protein molecules per cell (complex medium with amino acids, without glucose): 1257 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, exponential phase): 5143 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, early stationary phase after glucose exhaustion): 3169 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, late stationary phase after glucose exhaustion): 4953 PubMed

Biological materials

  • Expression vector: for expression, purification in E. coli with N-terminal His-tag, pRSETA available in Ulf Gerth's lab
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Peter Graumann, Freiburg University, Germany homepage

Your additional remarks

References

Reviews

Original publications