Difference between revisions of "LevE"
Line 84: | Line 84: | ||
* '''Swiss prot entry:''' [http://www.uniprot.org/uniprot/P26380 P26380] | * '''Swiss prot entry:''' [http://www.uniprot.org/uniprot/P26380 P26380] | ||
− | * '''KEGG entry:''' [http://www.genome.jp/dbget-bin/www_bget?bsu | + | * '''KEGG entry:''' [http://www.genome.jp/dbget-bin/www_bget?bsu:BSU27060] |
* '''E.C. number:''' [http://www.expasy.org/enzyme/2.7.1.69 2.7.1.69] | * '''E.C. number:''' [http://www.expasy.org/enzyme/2.7.1.69 2.7.1.69] |
Revision as of 02:55, 25 June 2009
- Description: trigger enzyme: fructose-specific phosphotransferase system, EIIB component
Gene name | levE |
Synonyms | sacL |
Essential | no |
Product | trigger enzyme: fructose-specific phosphotransferase system, EIIB component
fructose-specific enzyme IIB (EC 2.7.1.69) |
Function | fructose uptake and phosphorylation, control of LevR activity |
Metabolic function and regulation of this protein in SubtiPathways: Sugar catabolism | |
MW, pI | 17 kDa, 9.444 |
Gene length, protein length | 486 bp, 162 aa |
Immediate neighbours | levF, levD |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
The gene
Basic information
- Locus tag: BSU27060
Phenotypes of a mutant
Database entries
- DBTBS entry: no entry
- SubtiList entry: [1]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: Protein EIIB N(pi)-phospho-L-histidine/cysteine + sugar = protein EIIB + sugar phosphate (according to Swiss-Prot)
- Protein family: PTS permease, mannose permease (Man) family PubMed
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains:
- Modification:
- Cofactor(s):
- Effectors of protein activity:
- Localization: cell membrane (according to Swiss-Prot)
Database entries
- Structure: 1BLE
- Swiss prot entry: P26380
- KEGG entry: [2]
- E.C. number: 2.7.1.69
Additional information
Expression and regulation
- Regulation: repressed by glucose (CcpA) , carbon catabolite repression, induction by fructose
- Regulatory mechanism: CcpA: transcription repression, catabolite repression: transcription repression by CcpA, transcription activator LevR is less active in the presence of glucose; induction: transcription activation by LevR
- Additional information:
Biological materials
- Mutant:
- Expression vector:
- lacZ fusion:
- GFP fusion:
- two-hybrid system:
- Antibody:
Labs working on this gene/protein
Your additional remarks
References
Jonathan Reizer, Steffi Bachem, Aiala Reizer, Maryvonne Arnaud, Milton H Saier, Jörg Stülke
Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis.
Microbiology (Reading): 1999, 145 ( Pt 12);3419-3429
[PubMed:10627040]
[WorldCat.org]
[DOI]
(P p)
S Schauder, R S Nunn, R Lanz, B Erni, T Schirmer
Crystal structure of the IIB subunit of a fructose permease (IIBLev) from Bacillus subtilis.
J Mol Biol: 1998, 276(3);591-602
[PubMed:9551099]
[WorldCat.org]
[DOI]
(P p)
V Charrier, J Deutscher, A Galinier, I Martin-Verstraete
Protein phosphorylation chain of a Bacillus subtilis fructose-specific phosphotransferase system and its participation in regulation of the expression of the lev operon.
Biochemistry: 1997, 36(5);1163-72
[PubMed:9033408]
[WorldCat.org]
[DOI]
(P p)
S Seip, R Lanz, R Gutknecht, K Flükiger, B Erni
The fructose transporter of Bacillus subtilis encoded by the lev operon: backbone assignment and secondary structure of the IIB(Lev) subunit.
Eur J Biochem: 1997, 243(1-2);306-14
[PubMed:9030753]
[WorldCat.org]
[DOI]
(P p)
I Martin-Verstraete, M Débarbouillé, A Klier, G Rapoport
Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon.
J Mol Biol: 1990, 214(3);657-71
[PubMed:2117666]
[WorldCat.org]
[DOI]
(P p)