Difference between revisions of "LevD"
Line 80: | Line 80: | ||
* '''Structure:''' | * '''Structure:''' | ||
− | * ''' | + | * '''UniProt:''' [http://www.uniprot.org/uniprot/P26379 P26379] |
* '''KEGG entry:''' [http://www.genome.jp/dbget-bin/www_bget?bsu:BSU27070] | * '''KEGG entry:''' [http://www.genome.jp/dbget-bin/www_bget?bsu:BSU27070] |
Revision as of 13:50, 20 July 2009
- Description: fructose-specific phosphotransferase system, EIIA component
Gene name | levD |
Synonyms | |
Essential | no |
Product | fructose-specific phosphotransferase system, EIIA component |
Function | fructose uptake and phosphorylation |
Metabolic function and regulation of this protein in SubtiPathways: Sugar catabolism | |
MW, pI | 16 kDa, 4.479 |
Gene length, protein length | 438 bp, 146 aa |
Immediate neighbours | levE, levR |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
The gene
Basic information
- Locus tag: BSU27070
Phenotypes of a mutant
Database entries
- DBTBS entry: no entry
- SubtiList entry: [1]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: Protein EIIA N(pi)-phospho-L-histidine + protein EIIB = protein EIIA + protein EIIB N(pi)-phospho-L-histidine/cysteine (according to Swiss-Prot)
- Protein family: PTS permease, mannose permease (Man) family PubMed
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains:
- Modification:
- Cofactor(s):
- Effectors of protein activity:
- Interactions:
- Localization: cytoplasm (according to Swiss-Prot)
Database entries
- Structure:
- UniProt: P26379
- KEGG entry: [2]
- E.C. number: 2.7.1.69
Additional information
Expression and regulation
- Regulation: repressed by glucose (CcpA) , carbon catabolite repression, induction by fructose (LevR)
- Regulatory mechanism: CcpA: transcription repression, catabolite repression: transcription repression by CcpA, transcription activator LevR is less active in the presence of glucose
induction: transcription activation by LevR
- Additional information:
Biological materials
- Mutant:
- Expression vector:
- lacZ fusion:
- GFP fusion:
- two-hybrid system:
- Antibody:
Labs working on this gene/protein
Your additional remarks
References
Jonathan Reizer, Steffi Bachem, Aiala Reizer, Maryvonne Arnaud, Milton H Saier, Jörg Stülke
Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis.
Microbiology (Reading): 1999, 145 ( Pt 12);3419-3429
[PubMed:10627040]
[WorldCat.org]
[DOI]
(P p)
V Charrier, J Deutscher, A Galinier, I Martin-Verstraete
Protein phosphorylation chain of a Bacillus subtilis fructose-specific phosphotransferase system and its participation in regulation of the expression of the lev operon.
Biochemistry: 1997, 36(5);1163-72
[PubMed:9033408]
[WorldCat.org]
[DOI]
(P p)
J Stülke, I Martin-Verstraete, V Charrier, A Klier, J Deutscher, G Rapoport
The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon.
J Bacteriol: 1995, 177(23);6928-36
[PubMed:7592487]
[WorldCat.org]
[DOI]
(P p)
I Martin-Verstraete, J Stülke, A Klier, G Rapoport
Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
J Bacteriol: 1995, 177(23);6919-27
[PubMed:7592486]
[WorldCat.org]
[DOI]
(P p)
I Martin-Verstraete, M Débarbouillé, A Klier, G Rapoport
Mutagenesis of the Bacillus subtilis "-12, -24" promoter of the levanase operon and evidence for the existence of an upstream activating sequence.
J Mol Biol: 1992, 226(1);85-99
[PubMed:1619665]
[WorldCat.org]
[DOI]
(P p)
I Martin-Verstraete, M Débarbouillé, A Klier, G Rapoport
Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon.
J Mol Biol: 1990, 214(3);657-71
[PubMed:2117666]
[WorldCat.org]
[DOI]
(P p)