Difference between revisions of "PhoP"

From SubtiWiki
Jump to: navigation, search
Line 136: Line 136:
  
 
* '''Additional information:'''
 
* '''Additional information:'''
 +
** number of protein molecules per cell (minimal medium with glucose and ammonium): 90 {{PubMed|24696501}}
 +
** number of protein molecules per cell (complex medium with amino acids, without glucose): 706 {{PubMed|24696501}}
  
 
=Biological materials =
 
=Biological materials =

Revision as of 09:54, 17 April 2014

  • Description: two-component response regulator, regulation of phosphate metabolism

Gene name phoP
Synonyms
Essential no
Product two-component response regulator
Function regulation of phosphate metabolism
(phoA, phoB, phoD, resABCDE, tagA-tagB, tagDEF, tuaA-H)
Gene expression levels in SubtiExpress: phoP
Interactions involving this protein in SubtInteract: PhoP
Metabolic function and regulation of this protein in SubtiPathways:
phoP
MW, pI 27 kDa, 5.068
Gene length, protein length 720 bp, 240 aa
Immediate neighbours phoR, mdh
Sequences Protein DNA DNA_with_flanks
Genetic context
PhoP context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
PhoP expression.png




























Categories containing this gene/protein

phosphate metabolism, transcription factors and their control, regulators of core metabolism, sporulation proteins, general stress proteins (controlled by SigB), membrane proteins, phosphoproteins

This gene is a member of the following regulons

CcpA regulon, PhoP regulon, SigB regulon, SigE regulon

The PhoP regulon

The gene

Basic information

  • Locus tag: BSU29110

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
  • Protein family:
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification: phosphorylation by PhoR under conditions of phosphate limitation (stimulates DNA-binding activity)
  • Cofactor(s):
  • Effectors of protein activity: phosphorylation stimulates DNA-binding activity

Database entries

  • Structure: 1MVO (receiver domain)
  • KEGG entry: [3]
  • E.C. number:

Additional information

Expression and regulation

  • Regulation:
    • carbon catabolite repression (CcpA) PubMed
    • expressed under conditions of phosphate limitation (PhoP) PubMed
    • expressed in post-exponential phase (ScoC) PubMed
  • Additional information:
    • number of protein molecules per cell (minimal medium with glucose and ammonium): 90 PubMed
    • number of protein molecules per cell (complex medium with amino acids, without glucose): 706 PubMed

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Marion Hulett, University of Illinois at Chicago, USA Homepage

Your additional remarks

References

Regulation of phoP-phoR expression

Bindiya Kaushal, Salbi Paul, F Marion Hulett
Direct regulation of Bacillus subtilis phoPR transcription by transition state regulator ScoC.
J Bacteriol: 2010, 192(12);3103-13
[PubMed:20382764] [WorldCat.org] [DOI] (I p)

Ankita Puri-Taneja, Salbi Paul, Yinghua Chen, F Marion Hulett
CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6).
J Bacteriol: 2006, 188(4);1266-78
[PubMed:16452408] [WorldCat.org] [DOI] (P p)

Salbi Paul, Stephanie Birkey, Wei Liu, F Marion Hulett
Autoinduction of Bacillus subtilis phoPR operon transcription results from enhanced transcription from EsigmaA- and EsigmaE-responsive promoters by phosphorylated PhoP.
J Bacteriol: 2004, 186(13);4262-75
[PubMed:15205429] [WorldCat.org] [DOI] (P p)

Zoltán Prágai, Nicholas E E Allenby, Nicola O'Connor, Sarah Dubrac, Georges Rapoport, Tarek Msadek, Colin R Harwood
Transcriptional regulation of the phoPR operon in Bacillus subtilis.
J Bacteriol: 2004, 186(4);1182-90
[PubMed:14762014] [WorldCat.org] [DOI] (P p)

Hans-Matti Blencke, Georg Homuth, Holger Ludwig, Ulrike Mäder, Michael Hecker, Jörg Stülke
Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways.
Metab Eng: 2003, 5(2);133-49
[PubMed:12850135] [WorldCat.org] [DOI] (P p)

Biochemical analyses

Targets of PhoR

Additional publications: PubMed

Wael R Abdel-Fattah, Yinghua Chen, Amr Eldakak, F Marion Hulett
Bacillus subtilis phosphorylated PhoP: direct activation of the E(sigma)A- and repression of the E(sigma)E-responsive phoB-PS+V promoters during pho response.
J Bacteriol: 2005, 187(15);5166-78
[PubMed:16030210] [WorldCat.org] [DOI] (P p)

H Antelmann, C Scharf, M Hecker
Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis.
J Bacteriol: 2000, 182(16);4478-90
[PubMed:10913081] [WorldCat.org] [DOI] (P p)

S Eder, W Liu, F M Hulett
Mutational analysis of the phoD promoter in Bacillus subtilis: implications for PhoP binding and promoter activation of Pho regulon promoters.
J Bacteriol: 1999, 181(7);2017-25
[PubMed:10094677] [WorldCat.org] [DOI] (P p)

S M Birkey, W Liu, X Zhang, M F Duggan, F M Hulett
Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: Bacillus subtilis PhoP directly regulates production of ResD.
Mol Microbiol: 1998, 30(5);943-53
[PubMed:9988472] [WorldCat.org] [DOI] (P p)

Y Qi, F M Hulett
Role of Pho-P in transcriptional regulation of genes involved in cell wall anionic polymer biosynthesis in Bacillus subtilis.
J Bacteriol: 1998, 180(15);4007-10
[PubMed:9683503] [WorldCat.org] [DOI] (P p)

W Liu, Y Qi, F M Hulett
Sites internal to the coding regions of phoA and pstS bind PhoP and are required for full promoter activity.
Mol Microbiol: 1998, 28(1);119-30
[PubMed:9593301] [WorldCat.org] [DOI] (P p)

W Liu, S Eder, F M Hulett
Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P.
J Bacteriol: 1998, 180(3);753-8
[PubMed:9457886] [WorldCat.org] [DOI] (P p)

W Liu, F M Hulett
Bacillus subtilis PhoP binds to the phoB tandem promoter exclusively within the phosphate starvation-inducible promoter.
J Bacteriol: 1997, 179(20);6302-10
[PubMed:9335276] [WorldCat.org] [DOI] (P p)

Y Qi, Y Kobayashi, F M Hulett
The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the pho regulon.
J Bacteriol: 1997, 179(8);2534-9
[PubMed:9098050] [WorldCat.org] [DOI] (P p)


Other original publications

Matthew Schau, Amr Eldakak, F Marion Hulett
Terminal oxidases are essential to bypass the requirement for ResD for full Pho induction in Bacillus subtilis.
J Bacteriol: 2004, 186(24);8424-32
[PubMed:15576792] [WorldCat.org] [DOI] (P p)

C Fabret, V A Feher, J A Hoch
Two-component signal transduction in Bacillus subtilis: how one organism sees its world.
J Bacteriol: 1999, 181(7);1975-83
[PubMed:10094672] [WorldCat.org] [DOI] (P p)