Difference between revisions of "Papers of the month"

From SubtiWiki
Jump to: navigation, search
(2011)
Line 1: Line 1:
 
=2011=
 
=2011=
 +
* '''August 2011'''
 +
** [http://www.ncbi.nlm.nih.gov/pubmed/21749987 Chi ''et al''.] demonstrate that S-bacillithiolation of the repressor [[OhrR]] and of four enzymes of the methionine biosynthesis pathway protects the ''B. subtilis'' cell against hypochlorite stress.
 +
<pubmed>21749987</pubmed>
 +
** '''Relevant ''Subti''Wiki pages:'''  [[Haike Antelmann]], [[Dörte Becher]], [[Ulrike Mäder]], [[resistance against oxidative and electrophile stress]], [[Spx regulon]], [[CtsR regulon]], [[PerR regulon]], [[OhrR]], [[MetE]], [[YxjG]], [[PpaC]], [[SerA]], [[YphP]]
 +
 +
 
* '''July 2011'''
 
* '''July 2011'''
 
** [http://www.ncbi.nlm.nih.gov/pubmed/21636744 Domínguez-Escobar ''et al''.] from [[Rut Carballido-Lopez]]' lab and [http://www.ncbi.nlm.nih.gov/pubmed/21636745 Garner ''et al''.] report that movement of actin-like filaments is driven by the peptidoglycan elongation machinery. Both papers suggest that the [[MreB]]-like filaments serve to restrict the mobility of the peptidoglycan synthesizing machinery<br/>
 
** [http://www.ncbi.nlm.nih.gov/pubmed/21636744 Domínguez-Escobar ''et al''.] from [[Rut Carballido-Lopez]]' lab and [http://www.ncbi.nlm.nih.gov/pubmed/21636745 Garner ''et al''.] report that movement of actin-like filaments is driven by the peptidoglycan elongation machinery. Both papers suggest that the [[MreB]]-like filaments serve to restrict the mobility of the peptidoglycan synthesizing machinery<br/>

Revision as of 18:21, 30 July 2011

2011

  • August 2011
    • Chi et al. demonstrate that S-bacillithiolation of the repressor OhrR and of four enzymes of the methionine biosynthesis pathway protects the B. subtilis cell against hypochlorite stress.


Ethan C Garner, Remi Bernard, Wenqin Wang, Xiaowei Zhuang, David Z Rudner, Tim Mitchison
Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis.
Science: 2011, 333(6039);222-5
[PubMed:21636745] [WorldCat.org] [DOI] (I p)

Julia Domínguez-Escobar, Arnaud Chastanet, Alvaro H Crevenna, Vincent Fromion, Roland Wedlich-Söldner, Rut Carballido-López
Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.
Science: 2011, 333(6039);225-8
[PubMed:21636744] [WorldCat.org] [DOI] (I p)

  • A comment on these papers:



  • May 2011
    • Miles et al. identified the enzyme for the key final step in the biosynthesis of queuosine, a hypermodified base found in the wobble positions of tRNA Asp, Asn, His, and Tyr from bacteria to man
    • Relevant SubtiWiki pages: QueG, translation