Difference between revisions of "GudB"
(→Database entries) |
(→Biological materials) |
||
Line 109: | Line 109: | ||
* '''lacZ fusion:''' pGP651 (in [[pAC5]]), available in [[Stülke]] lab | * '''lacZ fusion:''' pGP651 (in [[pAC5]]), available in [[Stülke]] lab | ||
+ | |||
+ | * '''FLAG-tag construct:''' GP1194 (gudB, spc, based on [[pGP1331]]), GP1195 (gudB1, spc, based on [[pGP1331]]), available in [[Stülke]] lab | ||
* '''GFP fusion:''' | * '''GFP fusion:''' |
Revision as of 09:17, 29 June 2010
- Description: trigger enzyme: glutamate dehydrogenase (cryptic in 168 and derivatives)
Gene name | gudB |
Synonyms | ypcA |
Essential | no |
Product | trigger enzyme: glutamate dehydrogenase |
Function | glutamate utilization, control of GltC activity |
Metabolic function and regulation of this protein in SubtiPathways: Ammonium/ glutamate | |
MW, pI | 47 kDa, 5.582 |
Gene length, protein length | 1278 bp, 426 aa |
Immediate neighbours | ypdA, ypbH |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
The gene
Basic information
- Locus tag: BSU22960
Phenotypes of a mutant
The gene is cryptic. If gudB is activated (gudB1 mutation), the bacteria are able to utilize glutamate as the only carbon source. PubMed
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: L-glutamate + H2O + NAD+ = 2-oxoglutarate + NH3 + NADH (according to Swiss-Prot)
- Protein family: Glu/Leu/Phe/Val dehydrogenases family (according to Swiss-Prot)
- Paralogous protein(s): RocG
Extended information on the protein
- Kinetic information:
- Domains:
- Modification:
- Cofactor(s):
- Effectors of protein activity:
- Interactions:
- Localization:
Database entries
- Structure: 3K8Z (enzymatically active GudB1)
- UniProt: P50735
- KEGG entry: [3]
- E.C. number: 1.4.1.2
Additional information
Expression and regulation
- Operon: gudB PubMed
- Regulation: constitutively expressed
- Regulatory mechanism:
- Additional information: GudB is subject to Clp-dependent proteolysis upon glucose starvation PubMed
Biological materials
- Mutant: GP691 (cat), available in Stülke lab
- Expression vector:
- FLAG-tag construct: GP1194 (gudB, spc, based on pGP1331), GP1195 (gudB1, spc, based on pGP1331), available in Stülke lab
- GFP fusion:
- two-hybrid system:
Labs working on this gene/protein
Linc Sonenshein, Tufts University, Boston, MA, USA Homepage
Jörg Stülke, University of Göttingen, Germany Homepage
Your additional remarks
The GudB protein is active in other legacy B. subtilis strains (e.g. strain 122). Thus, it can be speculated that the ancestral gudB gene was not cryptic, but became so as a product of the "domestication" of B. subtilis 168 in the lab. PubMed
References
Daniel R Zeigler, Zoltán Prágai, Sabrina Rodriguez, Bastien Chevreux, Andrea Muffler, Thomas Albert, Renyuan Bai, Markus Wyss, John B Perkins
The origins of 168, W23, and other Bacillus subtilis legacy strains.
J Bacteriol: 2008, 190(21);6983-95
[PubMed:18723616]
[WorldCat.org]
[DOI]
(I p)
Shigeki Kada, Masahiro Yabusaki, Takayuki Kaga, Hitoshi Ashida, Ken-ichi Yoshida
Identification of two major ammonia-releasing reactions involved in secondary natto fermentation.
Biosci Biotechnol Biochem: 2008, 72(7);1869-76
[PubMed:18603778]
[WorldCat.org]
[DOI]
(I p)
Fabian M Commichau, Katrin Gunka, Jens J Landmann, Jörg Stülke
Glutamate metabolism in Bacillus subtilis: gene expression and enzyme activities evolved to avoid futile cycles and to allow rapid responses to perturbations of the system.
J Bacteriol: 2008, 190(10);3557-64
[PubMed:18326565]
[WorldCat.org]
[DOI]
(I p)
Fabian M Commichau, Ingrid Wacker, Jan Schleider, Hans-Matti Blencke, Irene Reif, Philipp Tripal, Jörg Stülke
Characterization of Bacillus subtilis mutants with carbon source-independent glutamate biosynthesis.
J Mol Microbiol Biotechnol: 2007, 12(1-2);106-13
[PubMed:17183217]
[WorldCat.org]
[DOI]
(P p)
B R Belitsky, A L Sonenshein
Role and regulation of Bacillus subtilis glutamate dehydrogenase genes.
J Bacteriol: 1998, 180(23);6298-305
[PubMed:9829940]
[WorldCat.org]
[DOI]
(P p)