Difference between revisions of "GudB"

From SubtiWiki
Jump to: navigation, search
(Original publications)
(Biological materials)
Line 127: Line 127:
 
=Biological materials =
 
=Biological materials =
  
* '''Mutant:''' GP691 (cat), GP1160 (del aphA3) both available in [[Stülke]] lab
+
* '''Mutant:''' GP691 (cat), GP1160 (del aphA3) both available in [[Jörg Stülke]]'s lab
  
 
* '''Expression vector:'''  
 
* '''Expression vector:'''  
** for purification of GudB from ''E. coli'' carrying an N-terminal Strep-tag: pGP863 (in [[pGP172]]) available in [[Stülke]] lab
+
** for purification of GudB from ''E. coli'' carrying an N-terminal Strep-tag: pGP863 (in [[pGP172]]) available in [[Jörg Stülke]]'s lab
** for purification of GudB1 from ''E. coli'' carrying an N-terminal Strep-tag: pGP864 (in [[pGP172]]) available in [[Stülke]] lab
+
** for purification of GudB1 from ''E. coli'' carrying an N-terminal Strep-tag: pGP864 (in [[pGP172]]) available in [[Jörg Stülke]]'s lab
** for ectopic expression of ''gudB'' with its native promoter: pGP900 (in [[pAC5]]), available in [[Stülke]] lab
+
** for ectopic expression of ''gudB'' with its native promoter: pGP900 (in [[pAC5]]), available in [[Jörg Stülke]]'s lab
** wild type ''gudB'', expression in ''B. subtilis'', in [[pBQ200]]: pGP1712, available in [[Stülke]] lab         
+
** wild type ''gudB'', expression in ''B. subtilis'', in [[pBQ200]]: pGP1712, available in [[Jörg Stülke]]'s lab         
* '''lacZ fusion:''' pGP651 (in [[pAC5]]), available in [[Stülke]] lab
+
* '''lacZ fusion:''' pGP651 (in [[pAC5]]), available in [[Jörg Stülke]]'s lab
  
* '''FLAG-tag construct:''' GP1194 (gudB, spc, based on [[pGP1331]]), GP1195 (gudB1, spc, based on [[pGP1331]]),  available in [[Stülke]] lab
+
* '''FLAG-tag construct:''' GP1194 (gudB, spc, based on [[pGP1331]]), GP1195 (gudB1, spc, based on [[pGP1331]]),  available in [[Jörg Stülke]]'s lab
  
 
* '''GFP fusion:'''
 
* '''GFP fusion:'''
Line 142: Line 142:
 
* '''two-hybrid system:'''  
 
* '''two-hybrid system:'''  
  
* '''Antibody:''' antibody against [[RocG]] recognizes GudB, available in [[Stülke]] lab
+
* '''Antibody:''' antibody against [[RocG]] recognizes GudB, available in [[Jörg Stülke]]'s lab
  
 
=Labs working on this gene/protein=
 
=Labs working on this gene/protein=

Revision as of 16:39, 21 July 2013

  • Description: trigger enzyme: glutamate dehydrogenase (cryptic in 168 and derivatives)

Gene name gudB
Synonyms ypcA
Essential no
Product trigger enzyme: glutamate dehydrogenase
Function glutamate utilization, control of GltC activity
Gene expression levels in SubtiExpress: gudB
Metabolic function and regulation of this protein in SubtiPathways:
Ammonium/ glutamate
MW, pI 47 kDa, 5.582
Gene length, protein length 1278 bp, 426 aa
Immediate neighbours ypdA, ypbH
Sequences Protein DNA DNA_with_flanks
Genetic context
GudB context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
GudB expression.png















Categories containing this gene/protein

utilization of amino acids, glutamate metabolism, transcription factors and their control, trigger enzyme, phosphoproteins

This gene is a member of the following regulons

The gene

Basic information

  • Locus tag: BSU22960

Expression

Phenotypes of a mutant

  • The gene is cryptic. If gudB is activated (gudB1 mutation), the bacteria are able to utilize glutamate as the only carbon source. PubMed
  • A rocG gudB mutant is sensitive to ß-lactam antibiotics such as cefuroxime and to fosfomycin due to the downregulation of the SigW regulon PubMed
  • transcription profile of a rocG gudB mutant strain: GEO PubMed

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: L-glutamate + H2O + NAD+ = 2-oxoglutarate + NH3 + NADH + H+ (according to Swiss-Prot)
  • Protein family: Glu/Leu/Phe/Val dehydrogenases family (according to Swiss-Prot)
  • Paralogous protein(s): RocG

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
    • phosphorylated on Arg-56, Arg-83, and Arg-421 and/or Arg-423 PubMed
  • Cofactor(s):
  • Effectors of protein activity:

Database entries

  • Structure: 3K8Z (enzymatically active GudB1) PubMed
  • KEGG entry: [4]

Additional information

Expression and regulation

  • Regulation: constitutively expressed PubMed
  • Regulatory mechanism:
  • Additional information: GudB is subject to Clp-dependent proteolysis upon glucose starvation PubMed

Biological materials

  • Mutant: GP691 (cat), GP1160 (del aphA3) both available in Jörg Stülke's lab
  • Expression vector:
    • for purification of GudB from E. coli carrying an N-terminal Strep-tag: pGP863 (in pGP172) available in Jörg Stülke's lab
    • for purification of GudB1 from E. coli carrying an N-terminal Strep-tag: pGP864 (in pGP172) available in Jörg Stülke's lab
    • for ectopic expression of gudB with its native promoter: pGP900 (in pAC5), available in Jörg Stülke's lab
    • wild type gudB, expression in B. subtilis, in pBQ200: pGP1712, available in Jörg Stülke's lab
  • lacZ fusion: pGP651 (in pAC5), available in Jörg Stülke's lab
  • GFP fusion:
  • two-hybrid system:

Labs working on this gene/protein

Linc Sonenshein, Tufts University, Boston, MA, USA Homepage

Jörg Stülke, University of Göttingen, Germany Homepage

Fabian Commichau University of Göttingen, Germany Homepage

Your additional remarks

The GudB protein is active in other legacy B. subtilis strains (e.g. strain 122). Thus, it can be speculated that the ancestral gudB gene was not cryptic, but became so as a product of the "domestication" of B. subtilis 168 in the lab. PubMed

References

Reviews

Katrin Gunka, Fabian M Commichau
Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation.
Mol Microbiol: 2012, 85(2);213-24
[PubMed:22625175] [WorldCat.org] [DOI] (I p)

Jason R Treberg, Margaret E Brosnan, Malcolm Watford, John T Brosnan
On the reversibility of glutamate dehydrogenase and the source of hyperammonemia in the hyperinsulinism/hyperammonemia syndrome.
Adv Enzyme Regul: 2010, 50(1);34-43
[PubMed:19895831] [WorldCat.org] [DOI] (I p)

Victoria I Bunik, Alisdair R Fernie
Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation.
Biochem J: 2009, 422(3);405-21
[PubMed:19698086] [WorldCat.org] [DOI] (I e)

N M Brunhuber, J S Blanchard
The biochemistry and enzymology of amino acid dehydrogenases.
Crit Rev Biochem Mol Biol: 1994, 29(6);415-67
[PubMed:7705101] [WorldCat.org] [DOI] (P p)

R C Hudson, R M Daniel
L-glutamate dehydrogenases: distribution, properties and mechanism.
Comp Biochem Physiol B: 1993, 106(4);767-92
[PubMed:8299344] [WorldCat.org] [DOI] (P p)


Original publications