Akos T Kovacs

From SubtiWiki
Jump to: navigation, search

ATKovacs2.jpg

Photo by Wout Overkamp[1] from 2012.


Akos T Kovacs

  • Current position: Professor of Microbiome Ecology at Leiden University, the Netherlands (2023-)
  • Previous positions:
  • Professor of Bacterial Physiology and Genetics at the Technical University of Denmark (2017-2025, part time from 2023)
  • Group leader at Friedrich Schiller University Jena, Germany (2012-2017)
  • Habilitation (2016), PhD (2003)
  • Contact: a.t.kovacs (AT) biology.leidenuniv.nl send mail

Research Interests

  • bacterial biofilm development
  • plant microbiome
  • chemical ecology, secondary metabolites, lipoeptides
  • B. subtilis, B. cereus, B. thuringiensis
  • interaction of Bacilli and fungi
  • evolution in biofilms
  • microbial cooperation and competition
  • phenotypic heterogeneity

Publications

Pubmed

Publications in the last 5 years

135. Lozano-Andrade CN, Dinesen C, Wibowo M, Arenos Bach N, Hesselberg-Thomsen V, Jarmusch SA, Strube ML, Kovács ÁT (2025) Surfactin facilitates establishment of Bacillus subtilis in synthetic communities. ISME Journal 19:wraf013 (https://doi.org/10.1093/ismejo/wraf013) (preprint on bioRxiv https://doi.org/10.1101/2024.08.14.607878)

134. Dinesen C, Vertot M, Jarmusch SA, Lozano-Andrade CN, Andersen AJC, Kovács ÁT (2025) Subtilosin A production is influenced by surfactin levels in Bacillus subtilis. microLIFE 6:uqae029 (https://doi.org/10.1093/femsml/uqae029) (preprint on bioRxiv https://doi.org/10.1101/2024.08.15.608099)

133. Stefanic P, Stare E, Floccari VA, Kovac J, Hertel R, Rocha U, Kovács ÁT, Mandic-Mulec I, Strube ML, Dragoš A (2025) Ecology of prophage-like elements in Bacillus subtilis at global and local geographical scale. Cell Reports 44(1):115197 (https://doi.org/10.1016/j.celrep.2024.115197) (preprint on bioRxiv https://doi.org/10.1101/2024.07.03.601884)

132. Stannius RO, Fusco S, Cowled M, Kovács ÁT (2025) Surfactin accelerates Bacillus subtilis pellicle biofilm development. Biofilm 9:100249 (https://doi.org/10.1016/j.bioflm.2024.100249) (preprint on bioRxiv https://doi.org/10.1101/2024.10.13.618088)

131. Zdouc MM, Blin K, (+157 authors), Kovács ÁT, (+129 authors), Weber T, Medema MH (2024) MIBiG 4.0: Advancing biosynthetic gene cluster curation through global collaboration. Nucleic Acids Research 52:gkae1115 (https://doi.org/10.1093/nar/gkae1115)

130. Song L, Nielsen LJD, Xu X, Mohite OS, Nuhamunada M, Xu Z, Murphy R, Bodawatta K, Abdulla MH, Sonnenschein EC, Weber T, Kovács ÁT (2024) Expanding the genome information on Bacillales for biosynthetic gene cluster discovery. Scientific Data 11:1267 (https://doi.org/10.1038/s41597-024-04118-x) (preprint on bioRxiv https://doi.org/10.1101/2024.04.24.590912)

129. Xie J, Sun X, Xia Y, Tao L, Tan T, Zhang N, Xun W, Zhang R, Kovács ÁT, Xu Z, Shen Q (2024) Bridging the Gap: Biofilm-mediated establishment of Bacillus velezensis on Trichoderma guizhouense mycelia. Biofilm 8:100239 (https://doi.org/10.1016/j.bioflm.2024.100239) (preprint on bioRxiv https://doi.org/10.1101/2024.06.06.597722)

128. Xiong Q, Zhang H, Shu X, Sun X, Feng H, Xu Z, Kovács ÁT, Zhang R, Liu Y (2024) Autoinducer-2 relieves soil stress-induced dormancy of Bacillus velezensis by modulating sporulation signaling. NPJ Biofilms and Microbiomes 10: 117 (https://doi.org/10.1038/s41522-024-00594-6) (preprint on bioRxiv https://doi.org/10.1101/2021.11.02.466875)

127. Kovács ÁT (2024) Chemical ecology: bacteria-fungi interaction for plant biocontrol. Current Biology 34: 1083-1085 (Commentary) (https://doi.org/10.1016/j.cub.2024.09.071)

126. Northen TR, Kleiner M, Torres M, Kovács ÁT, Nicolaisen MH, Krzyżanowska DM, Sharma S, Lund G, Jelsbak L, Baars O, Kindtler NL, Wippel K, Dinesen C, Ferrarezi JA, Marian M, Pioppi A, Xu X, Andersen T, Geldner N, Schulze-Lefert P, Vorholt JA, Garrido-Oter R (2024) Community standards and future opportunities for synthetic communities in plant–microbiota research. Nature Microbiology 9: 2774–2784 (https://doi.org/10.1038/s41564-024-01833-4)

125. Xu X, Pioppi A, Kiesewalter HT, Strube ML, Kovács ÁT (2024) Disentangling the factors defining Bacillus subtilis group species abundance in natural soils. Environmental Microbiology 26(9), e16693 (https://doi.org/10.1111/1462-2920.16693) (preprint on bioRxiv https://doi.org/10.1101/2024.03.11.584434)

124. Lyng M, Þorisdóttir P, Sveinsdóttir SH, Hansen ML, Jelsbak L, Maróti G, Kovács ÁT (2024) Taxonomy of Pseudomonas spp determines interactions with Bacillus subtilis. mSystems 9: e00212-24 (https://doi.org/10.1128/msystems.00212-24) (preprint on bioRxiv https://doi.org/10.1101/2023.07.18.549276)

123. Hansen ML, Dénes Z, Jarmusch SA, Wibowo M, Lozano-Andrade CN, Kovács ÁT, Strube ML, Andersen AJC, Jelsbak L (2023) Resistance towards and biotransformation of a Pseudomonas-produced secondary metabolites during community invasion. ISME Journal 18: wrae105 (https://doi.org/10.1093/ismejo/wrae105) (preprint on bioRxiv https://doi.org/10.1101/2023.06.20.545698)

122. Richter A, Blei F, Hu G, Schwitalla JW, Lozano-Andrade CN, Xie J, Jarmusch SA, Wibowo M, Kjeldgaard B, Surabhi S, Xu X, Jautzus T, Phippen CBW, Tyc O, Arentshorst M, Wang Y, Garbeva P, Larsen TO, Ram AFJ, van den Hondel CAM, Maróti G, Kovács ÁT (2024) Enhanced surface colonisation and competition during bacterial adaptation to a fungus. Nature Communications 15:4486 (https://doi.org/10.1038/s41467-024-48812-1) (preprint on bioRxiv https://doi.org/10.1101/2023.03.27.534400)

121. Jensen CNG, Pang JKY, Gottardi M, Kračun SK, Svendsen BA, Nielsen KF, Kovács ÁT, Moelbak L, Fimognari L, Husted S, Schulz A (2024) Bacillus subtilis promotes plant phosphorus (P) acquisition through P solubilization and stimulation of root and root hair growth. Physiologia Plantarum 176:e14338 (https://doi.org/10.1111/ppl.14338)

120. Xu X, Kovács ÁT (2024) How to identify and quantify the members of the Bacillus genus? Environmental Microbiology 26:e16593 (https://doi.org/10.1111/1462-2920.16593)

119. Lyng M, Jørgensen JPB, Schostag MD, Jarmusch SA, Aguilar DKC, Lozano-Andrade CN, Kovács ÁT (2024) Competition for iron shapes metabolic antagonism between Bacillus subtilis and Pseudomonas marginalis. ISME Journal 18:wrad001 (https://doi.org/10.1093/ismejo/wrad001) (preprint on bioRxiv https://doi.org/10.1101/2023.06.12.544649)

118. Jensen CNG, Pang JKY, Hahn CM, Gottardi M, Husted S, Moelbak L, Kovács ÁT, Fimognari L, Schulz A (2024) Differential influence of Bacillus subtilis strains on Arabidopsis root architecture through common and distinct plant hormonal pathways. Plant Science 339:111936 (https://doi.org/10.1016/j.plantsci.2023.111936)

117. Kovács ÁT (2024) Plant cell wall component induced bacterial development. Trends in Microbiology 32(1): 1-3 (Commentary) (https://doi.org/10.1016/j.tim.2023.10.003)

116. Xu X, Nielsen LJD, Song L, Maróti G, Strube ML, Kovács ÁT (2023) Enhanced specificity of Bacillus metataxonomics using a tuf-targeted amplicon sequencing approach. ISME Communications 3(1):126 (https://doi.org/10.1038/s43705-023-00330-9) (preprint on bioRxiv https://doi.org/10.1101/2023.05.28.542609)

115. Sun X, Xie J, Zheng D, Wang W, Xia R, Wang W, Xun W, Huang Q, Zhang R, Kovács ÁT, Xu Z, Shen Q (2023) Metabolic interactions affect the biomass of synthetic bacterial biofilm communities. mSystems 8(6): 01045-23 (https://doi.org/10.1128/msystems.01045-23) (preprint on bioRxiv https://doi.org/10.1101/2022.01.23.477386)

114. Kovács ÁT (2023) Colony morphotype diversification as a signature of bacterial evolution. microLife 4: uqad041 (Commentary) (https://doi.org/10.1093/femsml/uqad041)

113. Lozano-Andrade CN, Nogueira CG, Henriksen NNSE, Wibowo M, Jarmusch SA, Kovács ÁT (2023) Establishment of a transparent soil system to study Bacillus subtilis chemical ecology. ISME Communications 3(1):110 (https://doi.org/10.1038/s43705-023-00318-5) (preprint on bioRxiv https://doi.org/10.1101/2022.01.10.475645)

112. Hu G, Wang Y, Liu X, Strube ML, Wang B, Kovács ÁT (2023) Species and condition shape the mutational spectrum in experimentally evolved biofilms. mSystems 8(5): 00548-23 (https://doi.org/10.1128/msystems.00548-23) (preprint on bioRxiv https://doi.org/10.1101/2022.12.07.519423)

111. Danevcic T, Spacapan M, Dragoš A, Kovács ÁT, Mandic-Mulec I (2023) DegQ is an important policing link between quorum sensing and regulated adaptative traits in Bacillus subtilis. Microbiology Spectrum 11(5): e00908-23 (https://doi.org/10.1128/spectrum.00908-23)

110. Sartor, Xu X, Popp T, Dodd AN, Kovács ÁT, Merrow M (2023) The circadian clock of the bacterium B. subtilis evokes properties of complex, multicellular circadian systems. Science Advances 9(31): eadh1308 (https://doi.org/10.1126/sciadv.adh1308)

109. Kovács ÁT (2023) Plant–microbe interactions: Plant-exuded myo-inositol attracts specific bacterial taxa. Current Biology 33(15):825-827 (Commentary) (https://doi.org/10.1016/j.cub.2023.06.066)

108. Kovács ÁT (2023) Diversification during cross-kingdom microbial experimental evolution. ISME Journal 17(9):1355-1357 (Commentary) (https://doi.org/10.1038/s41396-023-01479-w)

107. Hu G, Wang T, Blake C, Nordgaard M, Liu X, Wang B, Kovács ÁT (2023) Parallel genetic adaptation of Bacillus subtilis to different plant species. Microbial Genomics 9(7):mgen00164 (https://doi.org/10.1099/mgen.0.001064) (preprint on bioRxiv https://doi.org/10.1101/2023.03.17.533125)

106. Gallegos-Monterrosa R, Kovács ÁT (2023) Phenotypic plasticity: the role of a phosphatase family Rap in the genetic regulation of Bacilli. Molecular Microbiology 120(1): 20-31 (https://doi.org/10.1111/mmi.15060)

105. Lyng M, Kovács ÁT (2023) Frenemies of the soil: Bacillus and Pseudomonas interspecies interactions. Trends in Microbiology 31(8): 845-857 (https://doi.org/10.1016/j.tim.2023.02.003)

104. Sartor F, Kovács ÁT (2022) Rhythmic spatial self-organization of bacterial colonies. mBio Journal 13(4): e01703-22 (Commentary) (https://doi.org/10.1128/mbio.01703-22)

103. Lyng M, Kovács ÁT (2022) Microbial ecology: Metabolic heterogeneity and the division of labor in multicellular structures. Current Biology 32(14):771-774 (Commentary) (https://doi.org/10.1016/j.cub.2022.06.008)

102. Jautzus T, van Gestel J, Kovács ÁT (2022) Complex extracellular biology drives surface competition during colony expansion in Bacillus subtilis. ISME Journal 16(10):2320–2328 (https://doi.org/10.1038/s41396-022-01279-8) (preprint on bioRxiv https://doi.org/10.1101/2022.02.28.482363)

101. Jakab Á, Kovács F, Balla N, Tóth Z, Ragyák Á, Sajtos Z, Csillag K, Nagy-Köteles C, Nemes D, Pócsi I, Majoros L, Kovács ÁT, Kovács R (2022) Physiological and transcriptional profiling of surfactin exerted antifungal effect against Candida albicans. Biomedicine & Pharmacotherapy 152:113220 (https://doi.org/10.1016/j.biopha.2022.113220) (preprint on bioRxiv https://doi.org/10.1101/2022.04.19.488861)

100 Nordgaard M, Blake C, Maróti G, Strube ML, Kovács ÁT (2022) Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization. iScience 25(6): 104406 (https://doi.org/10.1016/j.isci.2022.104406) (preprint on bioRxiv https://doi.org/10.1101/2021.07.09.451762)

99. Lin Y, Xu X, Maróti G, Strube ML, Kovács ÁT (2022) Adaptation and phenotypic diversification of Bacillus thuringiensis biofilm are accompanied by fuzzy spreader morphotypes. NPJ Biofilms and Microbiomes 8(1):27 (https://doi.org/10.1038/s41522-022-00292-1) (preprint on bioRxiv https://doi.org/10.1101/2021.09.03.458824)

98. Kjeldgaard B, Neves AR, Fonseca C, Kovács ÁT, Domínguez-Cuevas P (2022) Quantitative high-throughput screening methods designed for identification of bacterial biocontrol strains with antifungal properties. Microbiology Spectrum 10(2):e01433-21 (https://doi.org/10.1128/spectrum.01433-21); (preprint on bioRxiv https://doi.org/10.1101/2021.06.23.449687)

97. Lin Y, Briandet R, Kovács ÁT (2022) Bacillus cereus sensu lato biofilm formation and its ecological importance. Biofilm 4:100070 (https://doi.org/10.1016/j.bioflm.2022.100070)

96. Sun X, Xu Z, Xie J, Thomsen VH, Tan T, Zheng D, Strube ML, Dragos A, Shen Q, Zhang R, Kovács ÁT (2022) Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. ISME Journal 16(3):774–787 (https://doi.org/10.1038/s41396-021-01125-3) (preprint on bioRxiv https://doi.org/10.1101/2021.06.02.446779)

95. Lozano-Andrade CN, Strube ML, Kovács ÁT (2021) Complete genome sequences of four soil-derived isolates for studying synthetic bacterial community assembly. Microbiology Resource Announcements 10(46):e00848-21 (https://doi.org/10.1128/MRA.00848-21)

94. Lin Y, Alstrup M, Pang JKY, Maróti G, Er-Rafik M, Tourasse N, Okstad OA, Kovács ÁT (2021) Adaptation of Bacillus thuringiensis to plant colonisation affects differentiation and toxicity. mSystems 6(5):e00864-21 (https://doi.org/10.1128/mSystems.00864-21) (preprint on bioRxiv https://doi.org/10.1101/2020.12.03.410076)

93. Blake C, Nordgaard M, Maróti G, Kovács ÁT (2021) Diversification of Bacillus subtilis during experimental evolution on Arabidopsis thaliana and the complementarity in root colonization of evolved subpopulations. Environmental Microbiology 23(10):6122-6136 (https://doi.org/10.1111/1462-2920.15680) (preprint on bioRxiv https://doi.org/10.1101/2021.03.06.434191)

92. Nordgaard M, Mortensen RMR, Kirk NK, Gallegos-Monterrosa R, Kovács ÁT (2021) Deletion of Rap-Phr systems in Bacillus subtilis influences in vitro biofilm formation and plant root colonization. Microbiology Open 10(3):e1212 (https://doi.org/10.1002/mbo3.1212) (preprint on bioRxiv https://doi.org/10.1101/2021.03.15.435437)

91. Dragoš A, Andersen AJC, Lozano-Andrade CN, Kempen PJ, Kovács ÁT, Lenz-Strube M (2021) Phages weaponize their bacteria with biosynthetic gene clusters. Current Biology 31(16):3479-3489 (https://doi.org/10.1016/j.cub.2021.05.046) (preprint on bioRxiv https://doi.org/10.1101/2020.10.01.322628)

90. Kovács ÁT, Stanley-Wall N (2021) Biofilm dispersal for spore release in Bacillus subtilis. Journal of Bacteriology 203(14):e00192-21 (Commentary) (https://doi .org/10.1128/JB.00192-21)

89. Gallegos-Monterrosa R, Christensen MN, Barchewitz T, Köppenhöfer S, Priyadarshini B, Bálint B, Maróti G, Kempen PJ, Dragoš A, Kovács ÁT (2021) Impact of Rap-Phr system abundance on adaptation of Bacillus subtilis. Communications Biology 4(1):468 (https://doi.org/10.1038/s42003-021-01983-9) (preprint on bioRxiv https://doi.org/10.1101/2020.09.01.278184)

88. Arnaouteli S, Bamford N, Stanley-Wall N, Kovács ÁT (2021) Bacillus subtilis biofilm formation and social interactions. Nature Reviews Microbiology 19(9):600-614 (https://doi.org/10.1038/s41579-021-00540-9) (invited review)

87. Steinke K, Mohite OS, Weber T, Kovács ÁT (2021) Phylogenetic distribution of secondary metabolites in the Bacillus subtilis species complex. mSystems 6(2):e00057-21. (https://doi.org/10.1128/mSystems.00057-21) (preprint on bioRxiv https://doi.org/10.1101/2020.10.28.358507)

86. Kiesewalter HT, Lozano-Andrade CN, Wibowo M, Strube ML, Maróti G, Snyder D, Jørgensen TS, Larsen TO, Cooper VS, Weber T, Kovács ÁT (2021) Genomic and chemical diversity of Bacillus subtilis secondary metabolites against plant pathogenic fungi. mSystems 6(1):e00770-20 (https://doi.org/10.1128/mSystems.00770-20) (preprint on bioRxiv https://doi.org/10.1101/2020.08.05.238063)

85. Hartmann R, Jeckel H, Jelli E, Singh PK, Vaidya S, Bayer M, Rode DKH, Vidakovic L, Diaz-Pascual F, Fong JCN, Dragoš A, Lamprecht O, Thöming JG, Netter N, Häussler S, Nadell CD, Sourjik V, Kovács ÁT, Yildiz FH, Drescher K (2021) Quantitative image analysis of microbial communities with BiofilmQ. Nature Microbiology 6(2):151-156 (https://doi.org/10.1038/s41564-020-00817-4) (preprint on bioRxiv https://doi.org/10.1101/735423v1)

84. Eelderink-Chen Z, Bosman J, Sartor F, Dodd A, Kovács ÁT, Merrow M (2021) A circadian clock in a nonphotosynthetic prokaryote. Science Advances 7(2):eabe2086 (https://doi.org/10.1126/sciadv.abe2086)

83. Dragoš A, Priyadarshini B, Hasan Z, Lenz-Strube M, Kempen PJ, Maróti G, Kaspar C, Bose B, Burton B, Bischofs IB, Kovács ÁT (2021) Pervasive prophage recombination occurs during evolution of spore-forming Bacilli. ISME Journal 15(5):1344–1358 (https://doi.org/10.1038/s41396-020-00854-1) (preprint on bioRxiv https://doi.org/10.1101/2020.05.06.055103)

82. Blake C, Christensen MN, Kovács ÁT (2021) Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Molecular Plant-Microbe Interactions 34(1):15-25 (https://doi.org/10.1094/MPMI-08-20-0225-CR)

81. Kiesewalter HT, Lozano-Andrade CN, Strube ML, Kovács ÁT (2020) Secondary metabolites of Bacillus subtilis impact the assembly of soil-derived semisynthetic bacterial communities. Beilstein Journal of Organic Chemistry 16, 2983–2998 (https://doi.org/10.3762/bjoc.16.248) (preprint on bioRxiv https://doi.org/10.1101/2020.08.20.259788)

80. Garde R, Ewald J, Kovács ÁT, Schuster S (2020) Modelling population dynamics in a unicellular social organism community using a minimal model and evolutionary game theory. Open Biology 10(11): 200206 (http://dx.doi.org/10.1098/rsob.200206)

79. Kovács ÁT (2020) A fungal scent from the cheese. Environmental Microbiology 22(11):4524–4526 (https://doi.org/10.1111/1462-2920.15267)

78. Otto SB, Martin M, Schäfer D, Hartmann R, Drescher K, Brix S, Dragoš A, Kovács ÁT (2020) Privatization of biofilm matrix in structurally heterogeneous biofilms. mSystems 5(4):e00425-20 (https://doi.org/10.1128/mSystems.00425-20) (preprint on bioRxiv https://doi.org/10.1101/742593)

77. Martin M, Dragoš A, Otto SB, Schäfer D, Brix S, Maróti G, Kovács ÁT (2020) Cheater-mediated evolution shifts phenotypic heterogeneity in Bacillus subtilis biofilms. ISME J 14(9):2302-2312 (https://doi.org/10.1038/s41396-020-0685-4) (preprint on bioRxiv https://doi.org/10.1101/494716)

76. Thérien M#, Kiesewalter HT#, Auria E, Charron-Lamoureux V, Wibowo M, Maróti G, Kovács ÁT*, Beauregard PB* (2020) Surfactin production is not essential for pellicle and root-associated biofilm development of Bacillus subtilis. Biofilm 2:100021 (https://doi.org/10.1016/j.bioflm.2020.100021) (preprint on bioRxiv https://doi.org/10.1101/865345) #co-first, *co-corresponding authors

75. Garde R, Ibrahim B, Kovács ÁT, Schuster S (2020) Differential equation based minimal model describing metabolic oscillations in Bacillus subtilis biofilms. Royal Society Open Science 7(2):190810 (http://dx.doi.org/10.1098/rsos.190810) (preprint on bioRxiv https://doi.org/10.1101/775593)

74. Kiesewalter HT, Lozano-Andrade CN, Maróti G, Snyder D, Cooper VS, Jørgensen TS, Weber T, Kovács ÁT (2020) Complete genome sequence of 13 Bacillus subtilis soil isolates to study secondary metabolite diversity. Microbiology Resource Announcements 9(2):e01406-19 (https://doi.org/10.1128/MRA.01406-19)

73. Falcón-García C, Kretschmer M, Lozano-Andrade CN, Schönleitner M, Dragoš A, Kovács ÁT, Lieleg O (2020) Effect of metal ions on Bacillus subtilis NCIB 3610 biofilm surface hydrophobicity and susceptibility towards antibiotics. NPJ Biofilms and Microbiome 6:1 (https://doi.org/10.1038/s41522-019-0111-8)


Homepages

UniversityPage

Open positions

Email me for possibilities.

Back to Labs working on Bacillus