RsbT

From SubtiWiki
Revision as of 10:12, 7 January 2014 by 134.76.70.252 (talk)
Jump to: navigation, search
Gene name rsbT
Synonyms ycxT
Essential no
Product PP2C activator, protein serine kinase
Function control of SigB activity
Gene expression levels in SubtiExpress: rsbT
Interactions involving this protein in SubtInteract: RsbT
Metabolic function and regulation of this protein in SubtiPathways:
rsbT
MW, pI 14 kDa, 6.587
Gene length, protein length 399 bp, 133 aa
Immediate neighbours rsbS, rsbU
Sequences Protein DNA DNA_with_flanks
Genetic context
RsbT context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
RsbT expression.png















Categories containing this gene/protein

protein modification, sigma factors and their control

This gene is a member of the following regulons

The gene

Basic information

  • Locus tag: BSU04690

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Protein family:
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s):
  • Effectors of protein activity:
    • phosphorylated RsbR activates the kinase activity of RsbT PubMed
    • activity is stimulated by light in a YtvA-dependent manner PubMed

Database entries

  • Structure: 3VY9 (complete stressosome)
  • KEGG entry: [3]
  • E.C. number:

Additional information

Expression and regulation

  • Regulation: constitutively expressed PubMed
  • Regulatory mechanism:
  • Additional information:
    • RsbT is synthesized at the same rate as RsbRA and RsbS, however, the RsbT level in growing B. subtilis is only 10% that of RsbRA, suggesting that the protein is unstable PubMed.

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

Reviews


Original Articles

Additional publications: PubMed

Locke JC, Young JW, Fontes M, Hernández Jiménez MJ, Elowitz MB  
Stochastic pulse regulation in bacterial stress response. 
Science. 2011 334:366-369. 
PubMed:21979936

Adam Reeves, Luis Martinez, William Haldenwang
Expression of, and in vivo stressosome formation by, single members of the RsbR protein family in Bacillus subtilis.
Microbiology (Reading): 2010, 156(Pt 4);990-998
[PubMed:20019076] [WorldCat.org] [DOI] (I p)

Jon Marles-Wright, Tim Grant, Olivier Delumeau, Gijs van Duinen, Susan J Firbank, Peter J Lewis, James W Murray, Joseph A Newman, Maureen B Quin, Paul R Race, Alexis Rohou, Willem Tichelaar, Marin van Heel, Richard J Lewis
Molecular architecture of the "stressosome," a signal integration and transduction hub.
Science: 2008, 322(5898);92-6
[PubMed:18832644] [WorldCat.org] [DOI] (I p)

Steven W Hardwick, Jan Pané-Farré, Olivier Delumeau, Jon Marles-Wright, James W Murray, Michael Hecker, Richard J Lewis
Structural and functional characterization of partner switching regulating the environmental stress response in Bacillus subtilis.
J Biol Chem: 2007, 282(15);11562-72
[PubMed:17303566] [WorldCat.org] [DOI] (P p)

Shuyu Zhang, Adam Reeves, Robyn L Woodbury, W G Haldenwang
Coexpression patterns of sigma(B) regulators in Bacillus subtilis affect sigma(B) inducibility.
J Bacteriol: 2005, 187(24);8520-5
[PubMed:16321960] [WorldCat.org] [DOI] (P p)

Shrin Kuo, Shuyu Zhang, Robyn L Woodbury, W G Haldenwang
Associations between Bacillus subtilis sigmaB regulators in cell extracts.
Microbiology (Reading): 2004, 150(Pt 12);4125-36
[PubMed:15583165] [WorldCat.org] [DOI] (P p)

Tae-Jong Kim, Tatiana A Gaidenko, Chester W Price
In vivo phosphorylation of partner switching regulators correlates with stress transmission in the environmental signaling pathway of Bacillus subtilis.
J Bacteriol: 2004, 186(18);6124-32
[PubMed:15342582] [WorldCat.org] [DOI] (P p)

Tae-Jong Kim, Tatiana A Gaidenko, Chester W Price
A multicomponent protein complex mediates environmental stress signaling in Bacillus subtilis.
J Mol Biol: 2004, 341(1);135-50
[PubMed:15312768] [WorldCat.org] [DOI] (P p)

Robyn L Woodbury, Tingqiu Luo, Lindsay Grant, W G Haldenwang
Mutational analysis of RsbT, an activator of the Bacillus subtilis stress response transcription factor, sigmaB.
J Bacteriol: 2004, 186(9);2789-97
[PubMed:15090521] [WorldCat.org] [DOI] (P p)

Chien-Cheng Chen, Richard J Lewis, Robin Harris, Michael D Yudkin, Olivier Delumeau
A supramolecular complex in the environmental stress signalling pathway of Bacillus subtilis.
Mol Microbiol: 2003, 49(6);1657-69
[PubMed:12950928] [WorldCat.org] [DOI] (P p)

Sujit Dutta, Richard J Lewis
Crystallization and preliminary crystallographic analysis of the kinase-recruitment domain of the PP2C-type phosphatase RsbU.
Acta Crystallogr D Biol Crystallogr: 2003, 59(Pt 1);191-3
[PubMed:12499568] [WorldCat.org] [DOI] (P p)

S Zhang, J M Scott, W G Haldenwang
Loss of ribosomal protein L11 blocks stress activation of the Bacillus subtilis transcription factor sigma(B).
J Bacteriol: 2001, 183(7);2316-21
[PubMed:11244072] [WorldCat.org] [DOI] (P p)

J M Scott, J Ju, T Mitchell, W G Haldenwang
The Bacillus subtilis GTP binding protein obg and regulators of the sigma(B) stress response transcription factor cofractionate with ribosomes.
J Bacteriol: 2000, 182(10);2771-7
[PubMed:10781545] [WorldCat.org] [DOI] (P p)

T A Gaidenko, X Yang, Y M Lee, C W Price
Threonine phosphorylation of modulator protein RsbR governs its ability to regulate a serine kinase in the environmental stress signaling pathway of Bacillus subtilis.
J Mol Biol: 1999, 288(1);29-39
[PubMed:10329124] [WorldCat.org] [DOI] (P p)

C M Kang, K Vijay, C W Price
Serine kinase activity of a Bacillus subtilis switch protein is required to transduce environmental stress signals but not to activate its target PP2C phosphatase.
Mol Microbiol: 1998, 30(1);189-96
[PubMed:9786195] [WorldCat.org] [DOI] (P p)

N Smirnova, J Scott, U Voelker, W G Haldenwang
Isolation and characterization of Bacillus subtilis sigB operon mutations that suppress the loss of the negative regulator RsbX.
J Bacteriol: 1998, 180(14);3671-80
[PubMed:9658013] [WorldCat.org] [DOI] (P p)

U Voelker, A Voelker, W G Haldenwang
The yeast two-hybrid system detects interactions between Bacillus subtilis sigmaB regulators.
J Bacteriol: 1996, 178(23);7020-3
[PubMed:8955331] [WorldCat.org] [DOI] (P p)

X Yang, C M Kang, M S Brody, C W Price
Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor.
Genes Dev: 1996, 10(18);2265-75
[PubMed:8824586] [WorldCat.org] [DOI] (P p)

U Voelker, A Voelker, W G Haldenwang
Reactivation of the Bacillus subtilis anti-sigma B antagonist, RsbV, by stress- or starvation-induced phosphatase activities.
J Bacteriol: 1996, 178(18);5456-63
[PubMed:8808936] [WorldCat.org] [DOI] (P p)

C M Kang, M S Brody, S Akbar, X Yang, C W Price
Homologous pairs of regulatory proteins control activity of Bacillus subtilis transcription factor sigma(b) in response to environmental stress.
J Bacteriol: 1996, 178(13);3846-53
[PubMed:8682789] [WorldCat.org] [DOI] (P p)

A Dufour, U Voelker, A Voelker, W G Haldenwang
Relative levels and fractionation properties of Bacillus subtilis σ(B) and its regulators during balanced growth and stress.
J Bacteriol: 1996, 178(13);3701-9 sigma
[PubMed:8682769] [WorldCat.org] [DOI] (P p)

A A Wise, C W Price
Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals.
J Bacteriol: 1995, 177(1);123-33
[PubMed:8002610] [WorldCat.org] [DOI] (P p)