GapB

From SubtiWiki
Revision as of 16:53, 30 November 2010 by Lflorez (talk | contribs)
Jump to: navigation, search
  • Description: glyceraldehyde-3-phosphate dehydrogenase, NADP-dependent, gluconeogenic enzyme

Gene name gapB
Synonyms ppc
Essential no
Product glyceraldehyde-3-phosphate dehydrogenase 2
Function anabolic enzyme in gluconeogenesis
Metabolic function and regulation of this protein in SubtiPathways:
Cys, Met & Sulfate assimilation, Central C-metabolism
MW, pI 37,3 kDa, 6.47
Gene length, protein length 1020 bp, 340 amino acids
Immediate neighbours speD, ytcD
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
GapB context.gif
This image was kindly provided by SubtiList







The gene

Basic information

  • Locus tag: BSU29020

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

Categories containing this gene/protein

carbon core metabolism

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: D-glyceraldehyde 3-phosphate + phosphate + NAD(P)+ = 3-phospho-D-glyceroyl phosphate + NAD(P)H (according to Swiss-Prot)
    • This reaction is part of the gluconeogenesis
  • Protein family: glyceraldehyde-3-phosphate dehydrogenase family (according to Swiss-Prot)
  • Paralogous protein(s): GapA

Extended information on the protein

  • Kinetic information: Michaelis-Menten PubMed
  • Domains:
    • Nucleotid bindinge domain (12-13)
    • 2x Glyceraldehyde 3-phosphate binding domain (151-153) & (210-211)
  • Modification:
  • Cofactor(s): NADP (preferentially) and NAD PubMed
  • Effectors of protein activity:
  • Interactions:
  • Localization: Cytoplasm (Homogeneous) PubMed

Database entries

  • Structure:
  • KEGG entry: [3]

Additional information

Expression and regulation

  • Regulation:
    • repressed in the presence of glucose (70-fold) (CcpN) PubMed
  • Regulatory mechanism:
  • Additional information:

Biological materials

  • Mutant:
    • GP701 (gapB::spec), available in Stülke lab
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • Antibody:

Labs working on this gene/protein

Stephane Aymerich, Microbiology and Molecular Genetics, INRA Paris-Grignon, France

Your additional remarks

References

Simon Tännler, Eliane Fischer, Dominique Le Coq, Thierry Doan, Emmanuel Jamet, Uwe Sauer, Stéphane Aymerich
CcpN controls central carbon fluxes in Bacillus subtilis.
J Bacteriol: 2008, 190(18);6178-87
[PubMed:18586936] [WorldCat.org] [DOI] (I p)

Helena B Thomaides, Ella J Davison, Lisa Burston, Hazel Johnson, David R Brown, Alison C Hunt, Jeffery Errington, Lloyd Czaplewski
Essential bacterial functions encoded by gene pairs.
J Bacteriol: 2007, 189(2);591-602
[PubMed:17114254] [WorldCat.org] [DOI] (P p)

Jean-Christophe Meile, Ling Juan Wu, S Dusko Ehrlich, Jeff Errington, Philippe Noirot
Systematic localisation of proteins fused to the green fluorescent protein in Bacillus subtilis: identification of new proteins at the DNA replication factory.
Proteomics: 2006, 6(7);2135-46
[PubMed:16479537] [WorldCat.org] [DOI] (P p)

Pascale Servant, Dominique Le Coq, Stéphane Aymerich
CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes.
Mol Microbiol: 2005, 55(5);1435-51
[PubMed:15720552] [WorldCat.org] [DOI] (P p)

A Sekowska, J Y Coppée, J P Le Caer, I Martin-Verstraete, A Danchin
S-adenosylmethionine decarboxylase of Bacillus subtilis is closely related to archaebacterial counterparts.
Mol Microbiol: 2000, 36(5);1135-47
[PubMed:10844697] [WorldCat.org] [DOI] (P p)

S Fillinger, S Boschi-Muller, S Azza, E Dervyn, G Branlant, S Aymerich
Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium.
J Biol Chem: 2000, 275(19);14031-7
[PubMed:10799476] [WorldCat.org] [DOI] (P p)