ThrS

From SubtiWiki
Revision as of 14:46, 7 August 2012 by 134.76.70.252 (talk)
Jump to: navigation, search
  • Description: threonyl-tRNA synthetase (major)

Gene name thrS
Synonyms
Essential no
Product threonyl-tRNA synthetase (major)
Function translation
Gene expression levels in SubtiExpress: thrS
Metabolic function and regulation of this protein in SubtiPathways:
tRNA charging
MW, pI 73 kDa, 5.214
Gene length, protein length 1929 bp, 643 aa
Immediate neighbours ysaA, ytxC
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
ThrS context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
ThrS expression.png



















Categories containing this gene/protein

translation

This gene is a member of the following regulons

T-box

The gene

Basic information

  • Locus tag: BSU28950

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: ATP + L-threonine + tRNA(Thr) = AMP + diphosphate + L-threonyl-tRNA(Thr) (according to Swiss-Prot)
  • Protein family: class-II aminoacyl-tRNA synthetase family (according to Swiss-Prot)
  • Paralogous protein(s): ThrZ, one of the two proteins has to be present for viability PubMed

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s):
  • Effectors of protein activity:

Database entries

  • Structure: 1TJE (from Escherichia coli, 44% identity, 63% similarity) PubMed
  • KEGG entry: [3]

Additional information

  • subject to Clp-dependent proteolysis upon glucose starvation PubMed

Expression and regulation

  • Regulation:
    • induced by threonine limitation (T-box) PubMed
    • expression transiently increases in the forespore PubMed
  • Additional information: subject to Clp-dependent proteolysis upon glucose starvation PubMed

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

Alex Rosenberg, Lior Sinai, Yoav Smith, Sigal Ben-Yehuda
Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level.
PLoS One: 2012, 7(7);e41921
[PubMed:22848659] [WorldCat.org] [DOI] (I p)

Ana Gutiérrez-Preciado, Tina M Henkin, Frank J Grundy, Charles Yanofsky, Enrique Merino
Biochemical features and functional implications of the RNA-based T-box regulatory mechanism.
Microbiol Mol Biol Rev: 2009, 73(1);36-61
[PubMed:19258532] [WorldCat.org] [DOI] (I p)

Helena B Thomaides, Ella J Davison, Lisa Burston, Hazel Johnson, David R Brown, Alison C Hunt, Jeffery Errington, Lloyd Czaplewski
Essential bacterial functions encoded by gene pairs.
J Bacteriol: 2007, 189(2);591-602
[PubMed:17114254] [WorldCat.org] [DOI] (P p)

Harald Putzer, Ciarán Condon, Dominique Brechemier-Baey, Renata Brito, Marianne Grunberg-Manago
Transfer RNA-mediated antitermination in vitro.
Nucleic Acids Res: 2002, 30(14);3026-33
[PubMed:12136084] [WorldCat.org] [DOI] (I p)

A Wipat, N Carter, S C Brignell, B J Guy, K Piper, J Sanders, P T Emmerson, C R Harwood
The dnaB-pheA (256 degrees-240 degrees) region of the Bacillus subtilis chromosome containing genes responsible for stress responses, the utilization of plant cell walls and primary metabolism.
Microbiology (Reading): 1996, 142 ( Pt 11);3067-78
[PubMed:8969504] [WorldCat.org] [DOI] (P p)

H Putzer, S Laalami, A A Brakhage, C Condon, M Grunberg-Manago
Aminoacyl-tRNA synthetase gene regulation in Bacillus subtilis: induction, repression and growth-rate regulation.
Mol Microbiol: 1995, 16(4);709-18
[PubMed:7476165] [WorldCat.org] [DOI] (P p)

N Gendron, H Putzer, M Grunberg-Manago
Expression of both Bacillus subtilis threonyl-tRNA synthetase genes is autogenously regulated.
J Bacteriol: 1994, 176(2);486-94
[PubMed:8288542] [WorldCat.org] [DOI] (P p)

H Putzer, N Gendron, M Grunberg-Manago
Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis: control by transcriptional antitermination involving a conserved regulatory sequence.
EMBO J: 1992, 11(8);3117-27
[PubMed:1379177] [WorldCat.org] [DOI] (P p)