GlnR

From SubtiWiki
Revision as of 17:40, 1 September 2009 by Jstuelk (talk | contribs)
Jump to: navigation, search
  • Description: transcriptional repressor of the glnR-glnA operon

Gene name glnR
Synonyms
Essential no
Product transcription repressor
Function regulation of glutamine synthesis
Metabolic function and regulation of this protein in SubtiPathways:
Ammonium/ glutamate, Cell wall
MW, pI 15 kDa, 9.731
Gene length, protein length 405 bp, 135 aa
Immediate neighbours ynbB, glnA
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
GlnR context.gif
This image was kindly provided by SubtiList







The gene

Basic information

  • Locus tag: BSU17450

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
  • Protein family:
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s): feedback-inhibited GlnA
  • Effectors of protein activity:
  • Interactions: GlnR-GlnA, with feedback-inhibited GlnA, this results in DNA binding
  • Localization:

Database entries

  • Structure:
  • KEGG entry: [3]
  • E.C. number:

Additional information

Expression and regulation

  • Regulation:
    • expressed in the absence of glutamine (GlnR) PubMed
    • repressed in the absence of good nitrogen sources (glutamine or ammonium) (TnrA) PubMed
  • Additional information:

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion: pGP189 (in pAC7), available in Stülke lab
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Susan Fisher, Boston, USA homepage

Your additional remarks

References

Susan H Fisher, Lewis V Wray
Novel trans-Acting Bacillus subtilis glnA mutations that derepress glnRA expression.
J Bacteriol: 2009, 191(8);2485-92
[PubMed:19233925] [WorldCat.org] [DOI] (I p)

Susan H Fisher, Lewis V Wray
Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes.
Proc Natl Acad Sci U S A: 2008, 105(3);1014-9
[PubMed:18195355] [WorldCat.org] [DOI] (I p)

Jaclyn L Brandenburg, Lewis V Wray, Lars Beier, Hanne Jarmer, Hans H Saxild, Susan H Fisher
Roles of PucR, GlnR, and TnrA in regulating expression of the Bacillus subtilis ure P3 promoter.
J Bacteriol: 2002, 184(21);6060-4
[PubMed:12374841] [WorldCat.org] [DOI] (P p)

L V Wray, A E Ferson, S H Fisher
Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H.
J Bacteriol: 1997, 179(17);5494-501
[PubMed:9287005] [WorldCat.org] [DOI] (P p)

L V Wray, A E Ferson, K Rohrer, S H Fisher
TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis.
Proc Natl Acad Sci U S A: 1996, 93(17);8841-5
[PubMed:8799114] [WorldCat.org] [DOI] (P p)

S W Brown, A L Sonenshein
Autogenous regulation of the Bacillus subtilis glnRA operon.
J Bacteriol: 1996, 178(8);2450-4
[PubMed:8636055] [WorldCat.org] [DOI] (P p)

H J Schreier, S W Brown, K D Hirschi, J F Nomellini, A L Sonenshein
Regulation of Bacillus subtilis glutamine synthetase gene expression by the product of the glnR gene.
J Mol Biol: 1989, 210(1);51-63
[PubMed:2573733] [WorldCat.org] [DOI] (P p)