Difference between revisions of "LeuD"

From SubtiWiki
Jump to: navigation, search
Line 13: Line 13:
 
|-
 
|-
 
|style="background:#ABCDEF;" align="center"|'''Function''' || biosynthesis of leucine
 
|style="background:#ABCDEF;" align="center"|'''Function''' || biosynthesis of leucine
 +
|-
 +
|colspan="2" style="background:#FAF8CC;" align="center"| '''Metabolic function and regulation of this protein in [[SubtiPathways|''Subti''Pathways]]: <br/>[http://subtiwiki.uni-goettingen.de/pathways/ile_val_leu.html Ile, Leu, Val]'''
 
|-
 
|-
 
|style="background:#ABCDEF;" align="center"| '''MW, pI''' || 22 kDa, 4.582   
 
|style="background:#ABCDEF;" align="center"| '''MW, pI''' || 22 kDa, 4.582   

Revision as of 14:05, 17 June 2009

  • Description: 3-isopropylmalate dehydratase (small subunit)

Gene name leuD
Synonyms
Essential no
Product 3-isopropylmalate dehydratase (small subunit)
Function biosynthesis of leucine
Metabolic function and regulation of this protein in SubtiPathways:
Ile, Leu, Val
MW, pI 22 kDa, 4.582
Gene length, protein length 597 bp, 199 aa
Immediate neighbours ysoA, leuC
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
LeuD context.gif
This image was kindly provided by SubtiList



The gene

Basic information

  • Locus tag: BSU28250

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: (2R,3S)-3-isopropylmalate = (2S)-2-isopropylmaleate + H2O (according to Swiss-Prot)
  • Protein family: LeuD type 1 subfamily (according to Swiss-Prot)
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s):
  • Effectors of protein activity:
  • Interactions:
  • Localization:

Database entries

  • Structure:
  • KEGG entry: [3]

Additional information

  • subject to Clp-dependent proteolysis upon glucose starvation PubMed

Expression and regulation

  • Regulation: repressed by casamino acids PubMed , expressed in the absence of branched-chain amino acids (BCAA), expression is stimulated in the presence of glucose PubMed, repressed by CodY PubMed
    • repressed in the absence of good nitrogen sources (glutamine or ammonium) (TnrA) PubMed
    • repressed during growth in the presence of branched chain amino acids (CodY) PubMed
  • Regulatory mechanism: CodY: transcription repression PubMed, glucose regulation: CcpA PubMed, repression by BCAA: tRNA-controlled RNA switch (T-box) that mediates termination/antitermination
  • Additional information: subject to Clp-dependent proteolysis upon glucose starvation PubMed

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

Ana Gutiérrez-Preciado, Tina M Henkin, Frank J Grundy, Charles Yanofsky, Enrique Merino
Biochemical features and functional implications of the RNA-based T-box regulatory mechanism.
Microbiol Mol Biol Rev: 2009, 73(1);36-61
[PubMed:19258532] [WorldCat.org] [DOI] (I p)

Ahmed Gaballa, Haike Antelmann, Claudio Aguilar, Sukhjit K Khakh, Kyung-Bok Song, Gregory T Smaldone, John D Helmann
The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins.
Proc Natl Acad Sci U S A: 2008, 105(33);11927-32
[PubMed:18697947] [WorldCat.org] [DOI] (I p)

Shigeo Tojo, Takenori Satomura, Kanako Kumamoto, Kazutake Hirooka, Yasutaro Fujita
Molecular mechanisms underlying the positive stringent response of the Bacillus subtilis ilv-leu operon, involved in the biosynthesis of branched-chain amino acids.
J Bacteriol: 2008, 190(18);6134-47
[PubMed:18641142] [WorldCat.org] [DOI] (I p)

Shigeo Tojo, Takenori Satomura, Kaori Morisaki, Ken-Ichi Yoshida, Kazutake Hirooka, Yasutaro Fujita
Negative transcriptional regulation of the ilv-leu operon for biosynthesis of branched-chain amino acids through the Bacillus subtilis global regulator TnrA.
J Bacteriol: 2004, 186(23);7971-9
[PubMed:15547269] [WorldCat.org] [DOI] (P p)

Ulrike Mäder, Susanne Hennig, Michael Hecker, Georg Homuth
Transcriptional organization and posttranscriptional regulation of the Bacillus subtilis branched-chain amino acid biosynthesis genes.
J Bacteriol: 2004, 186(8);2240-52
[PubMed:15060025] [WorldCat.org] [DOI] (P p)

Virginie Molle, Yoshiko Nakaura, Robert P Shivers, Hirotake Yamaguchi, Richard Losick, Yasutaro Fujita, Abraham L Sonenshein
Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis.
J Bacteriol: 2003, 185(6);1911-22
[PubMed:12618455] [WorldCat.org] [DOI] (P p)

Holger Ludwig, Christoph Meinken, Anastasija Matin, Jörg Stülke
Insufficient expression of the ilv-leu operon encoding enzymes of branched-chain amino acid biosynthesis limits growth of a Bacillus subtilis ccpA mutant.
J Bacteriol: 2002, 184(18);5174-8
[PubMed:12193635] [WorldCat.org] [DOI] (P p)

Ulrike Mäder, Georg Homuth, Christian Scharf, Knut Büttner, Rüdiger Bode, Michael Hecker
Transcriptome and proteome analysis of Bacillus subtilis gene expression modulated by amino acid availability.
J Bacteriol: 2002, 184(15);4288-95
[PubMed:12107147] [WorldCat.org] [DOI] (P p)

Christine Eymann, Georg Homuth, Christian Scharf, Michael Hecker
Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis.
J Bacteriol: 2002, 184(9);2500-20
[PubMed:11948165] [WorldCat.org] [DOI] (P p)

F J Grundy, T M Henkin
Conservation of a transcription antitermination mechanism in aminoacyl-tRNA synthetase and amino acid biosynthesis genes in gram-positive bacteria.
J Mol Biol: 1994, 235(2);798-804
[PubMed:8289305] [WorldCat.org] [DOI] (P p)