Difference between revisions of "SlrR"

From SubtiWiki
Jump to: navigation, search
(Biological materials)
(Biological materials)
Line 129: Line 129:
  
 
* '''Mutant:'''
 
* '''Mutant:'''
** GP955 (''[[slrR]]''-''pnbA''::''cat''), available in [[Stülke]] lab   
+
** GP955 (''slrR''-''[[pnbA]]''::''cat''), available in [[Stülke]] lab   
  
 
* '''Expression vector:'''
 
* '''Expression vector:'''

Revision as of 09:13, 2 November 2011

  • Description: transcriptional activator of competence development and sporulation genes, represses SigD-dependent flagellar genes, antagonist of SlrA and SinR, has LexA-like autocleavage activity

Gene name slrR
Synonyms yveJ, slr
Essential no
Product transcription regulator, SlrA antagonist
Function regulation of initiation of biofilm formation and of autolysis
Interactions involving this protein in SubtInteract: SlrR
Regulation of this protein in SubtiPathways:
Biofilm
MW, pI 17 kDa, 9.63
Gene length, protein length 456 bp, 152 aa
Immediate neighbours epsA, pnbA
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
Slr context.gif
This image was kindly provided by SubtiList







Categories containing this gene/protein

transcription factors and their control, transition state regulators, biofilm formation

This gene is a member of the following regulons

Abh regulon, AbrB regulon, SinR regulon

The SlrR regulon:

The gene

Basic information

  • Locus tag: BSU34380

Phenotypes of a mutant

Database entries

  • DBTBS entry: no entry
  • SubtiList entry: [1]

Additional information

  • overexpression of slrR suppresses the phenotype of a ymdB mutant PubMed

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
    • SlrR binds to and inhibits the activity of SlrA, SlrA indirectly stimulates the synthesis of SlrR by interacting with SinR. SlrR can bind to SinR and SinR directly represses the transcription of SlrR. SlrR indirectly derepresses its own gene. The heterocomplex of SlrR-SinR is a repressor of autolysin and motility genes and inhibits the repressor function of SinR. PubMed
    • repression of transcription of lytA-lytB-lytC and lytF PubMed
    • autocleavage PubMed
  • Protein family:
  • Paralogous protein(s): SinR

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
    • subject to self-cleavage via a LexA-like autopeptidase, this involves ClpC PubMed
  • Cofactor(s):
  • Effectors of protein activity: interaction with SinR triggers binding of SlrR to the promoters of lytA-lytB-lytC and lytF, resulting in their repression PubMed

Database entries

  • Structure:
  • KEGG entry: [2]
  • E.C. number:

Additional information

Expression and regulation

  • Operon:
  • Regulation:

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system: B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH), available in Stülke lab
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

Reviews

Patrick Piggot
Epigenetic switching: bacteria hedge bets about staying or moving.
Curr Biol: 2010, 20(11);R480-2
[PubMed:20541494] [WorldCat.org] [DOI] (I p)

Original publications

Additional publications: PubMed

Diethmaier C, Pietack N, Gunka K, Wrede C, Lehnik-Habrink M, Herzberg C, Hübner S, Stülke J  
A Novel Factor Controlling Bistability in Bacillus subtilis: The YmdB Protein Affects
Flagellin Expression and Biofilm Formation. 
J Bacteriol.: 2011, 193(21):5997-6007. 
PubMed:21856853

Patrice Bruscella, Karen Shahbabian, Soumaya Laalami, Harald Putzer
RNase Y is responsible for uncoupling the expression of translation factor IF3 from that of the ribosomal proteins L35 and L20 in Bacillus subtilis.
Mol Microbiol: 2011, 81(6);1526-41
[PubMed:21843271] [WorldCat.org] [DOI] (I p)

Martin Lehnik-Habrink, Joseph Newman, Fabian M Rothe, Alexandra S Solovyova, Cecilia Rodrigues, Christina Herzberg, Fabian M Commichau, Richard J Lewis, Jörg Stülke
RNase Y in Bacillus subtilis: a Natively disordered protein that is the functional equivalent of RNase E from Escherichia coli.
J Bacteriol: 2011, 193(19);5431-41
[PubMed:21803996] [WorldCat.org] [DOI] (I p)

Martin Lehnik-Habrink, Henrike Pförtner, Leonie Rempeters, Nico Pietack, Christina Herzberg, Jörg Stülke
The RNA degradosome in Bacillus subtilis: identification of CshA as the major RNA helicase in the multiprotein complex.
Mol Microbiol: 2010, 77(4);958-71
[PubMed:20572937] [WorldCat.org] [DOI] (I p)

Irnov Irnov, Cynthia M Sharma, Jörg Vogel, Wade C Winkler
Identification of regulatory RNAs in Bacillus subtilis.
Nucleic Acids Res: 2010, 38(19);6637-51
[PubMed:20525796] [WorldCat.org] [DOI] (I p)

Shiyi Yao, David H Bechhofer
Initiation of decay of Bacillus subtilis rpsO mRNA by endoribonuclease RNase Y.
J Bacteriol: 2010, 192(13);3279-86
[PubMed:20418391] [WorldCat.org] [DOI] (I p)

Jessica C Zweers, Thomas Wiegert, Jan Maarten van Dijl
Stress-responsive systems set specific limits to the overproduction of membrane proteins in Bacillus subtilis.
Appl Environ Microbiol: 2009, 75(23);7356-64
[PubMed:19820159] [WorldCat.org] [DOI] (I p)

Karen Shahbabian, Ailar Jamalli, Léna Zig, Harald Putzer
RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis.
EMBO J: 2009, 28(22);3523-33
[PubMed:19779461] [WorldCat.org] [DOI] (I p)

Fabian M Commichau, Fabian M Rothe, Christina Herzberg, Eva Wagner, Daniel Hellwig, Martin Lehnik-Habrink, Elke Hammer, Uwe Völker, Jörg Stülke
Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing.
Mol Cell Proteomics: 2009, 8(6);1350-60
[PubMed:19193632] [WorldCat.org] [DOI] (I p)

Hannes Hahne, Susanne Wolff, Michael Hecker, Dörte Becher
From complementarity to comprehensiveness--targeting the membrane proteome of growing Bacillus subtilis by divergent approaches.
Proteomics: 2008, 8(19);4123-36
[PubMed:18763711] [WorldCat.org] [DOI] (I p)

Alison Hunt, Joy P Rawlins, Helena B Thomaides, Jeff Errington
Functional analysis of 11 putative essential genes in Bacillus subtilis.
Microbiology (Reading): 2006, 152(Pt 10);2895-2907
[PubMed:17005971] [WorldCat.org] [DOI] (P p)

Yunrong Chai, Roberto Kolter, Richard Losick
Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability.
Mol Microbiol: 2010, 78(1);218-29
[PubMed:20923420] [WorldCat.org] [DOI] (I p)

Yunrong Chai, Thomas Norman, Roberto Kolter, Richard Losick
An epigenetic switch governing daughter cell separation in Bacillus subtilis.
Genes Dev: 2010, 24(8);754-65
[PubMed:20351052] [WorldCat.org] [DOI] (I p)

Yunrong Chai, Roberto Kolter, Richard Losick
Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis.
Mol Microbiol: 2009, 74(4);876-87
[PubMed:19788541] [WorldCat.org] [DOI] (I p)

Ewan J Murray, Mark A Strauch, Nicola R Stanley-Wall
SigmaX is involved in controlling Bacillus subtilis biofilm architecture through the AbrB homologue Abh.
J Bacteriol: 2009, 191(22);6822-32
[PubMed:19767430] [WorldCat.org] [DOI] (I p)

Kazuo Kobayashi
SlrR/SlrA controls the initiation of biofilm formation in Bacillus subtilis.
Mol Microbiol: 2008, 69(6);1399-410
[PubMed:18647168] [WorldCat.org] [DOI] (I p)

Frances Chu, Daniel B Kearns, Anna McLoon, Yunrong Chai, Roberto Kolter, Richard Losick
A novel regulatory protein governing biofilm formation in Bacillus subtilis.
Mol Microbiol: 2008, 68(5);1117-27
[PubMed:18430133] [WorldCat.org] [DOI] (I p)