Difference between revisions of "WalK"
(→Basic information/ Evolution) |
(→Extended information on the protein) |
||
Line 66: | Line 66: | ||
* '''Domains:''' two transmembrane segments, C-terminal histidine phosphotransferase domain | * '''Domains:''' two transmembrane segments, C-terminal histidine phosphotransferase domain | ||
− | * '''Modification:''' | + | * '''Modification:''' autophosphorylation on a His residue |
* '''Cofactor(s):''' | * '''Cofactor(s):''' |
Revision as of 19:31, 30 November 2009
- Description: two-component sensor kinase, controls cell wall metabolism
Gene name | walK |
Synonyms | yycG |
Essential | yes PubMed |
Product | two-component sensor kinase (OmpR family) |
Function | control of cell wall metabolism |
MW, pI | 69 kDa, 4.775 |
Gene length, protein length | 1833 bp, 611 aa |
Immediate neighbours | yycH, walR |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
The gene
Basic information
- Locus tag: BSU40400
Phenotypes of a mutant
essential PubMed
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: autophosphorylation, phosphorylation of WalR
- Protein family: two-component sensor kinase of the OmpR family
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains: two transmembrane segments, C-terminal histidine phosphotransferase domain
- Modification: autophosphorylation on a His residue
- Cofactor(s):
- Effectors of protein activity:
- Localization: cell membrane (according to Swiss-Prot), part of the division septum in growing cells PubMed
Database entries
- Structure:
- UniProt: Q45614
- KEGG entry: [3]
- E.C. number:
Additional information
Expression and regulation
- Regulation: expressed during vegetative growth, repressed during stationary phase PubMed
- Regulatory mechanism:
- Additional information:
Biological materials
- Mutant:
- Expression vector:
- lacZ fusion:
- GFP fusion:
- two-hybrid system:
- Antibody:
Labs working on this gene/protein
Your additional remarks
References
Reviews
Original Publications
Haiyan Zhao, Liang Tang
Crystallographic characterization of a multidomain histidine protein kinase from an essential two-component regulatory system.
Acta Crystallogr Sect F Struct Biol Cryst Commun: 2009, 65(Pt 4);346-9
[PubMed:19342776]
[WorldCat.org]
[DOI]
(I p)
Tatsuya Fukushima, Hendrik Szurmant, Eun-Ja Kim, Marta Perego, James A Hoch
A sensor histidine kinase co-ordinates cell wall architecture with cell division in Bacillus subtilis.
Mol Microbiol: 2008, 69(3);621-32
[PubMed:18573169]
[WorldCat.org]
[DOI]
(I p)
Hendrik Szurmant, Lintao Bu, Charles L Brooks, James A Hoch
An essential sensor histidine kinase controlled by transmembrane helix interactions with its auxiliary proteins.
Proc Natl Acad Sci U S A: 2008, 105(15);5891-6
[PubMed:18408157]
[WorldCat.org]
[DOI]
(I p)
Sarah Dubrac, Ivo Gomperts Boneca, Olivier Poupel, Tarek Msadek
New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus.
J Bacteriol: 2007, 189(22);8257-69
[PubMed:17827301]
[WorldCat.org]
[DOI]
(I p)
Paola Bisicchia, David Noone, Efthimia Lioliou, Alistair Howell, Sarah Quigley, Thomas Jensen, Hanne Jarmer, Kevin M Devine
The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis.
Mol Microbiol: 2007, 65(1);180-200
[PubMed:17581128]
[WorldCat.org]
[DOI]
(P p)
Patrick D McLaughlin, Benjamin G Bobay, Erin J Regel, Richele J Thompson, James A Hoch, John Cavanagh
Predominantly buried residues in the response regulator Spo0F influence specific sensor kinase recognition.
FEBS Lett: 2007, 581(7);1425-9
[PubMed:17350627]
[WorldCat.org]
[DOI]
(P p)
Hendrik Szurmant, Kristine Nelson, Eun-Ja Kim, Marta Perego, James A Hoch
YycH regulates the activity of the essential YycFG two-component system in Bacillus subtilis.
J Bacteriol: 2005, 187(15);5419-26
[PubMed:16030236]
[WorldCat.org]
[DOI]
(P p)
Alistair Howell, Sarah Dubrac, Kasper Krogh Andersen, David Noone, Juliette Fert, Tarek Msadek, Kevin Devine
Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach.
Mol Microbiol: 2003, 49(6);1639-55
[PubMed:12950927]
[WorldCat.org]
[DOI]
(P p)
Keisuke Fukuchi, Yasuhiro Kasahara, Kei Asai, Kazuo Kobayashi, Shigeki Moriya, Naotake Ogasawara
The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis.
Microbiology (Reading): 2000, 146 ( Pt 7);1573-1583
[PubMed:10878122]
[WorldCat.org]
[DOI]
(P p)
C Fabret, V A Feher, J A Hoch
Two-component signal transduction in Bacillus subtilis: how one organism sees its world.
J Bacteriol: 1999, 181(7);1975-83
[PubMed:10094672]
[WorldCat.org]
[DOI]
(P p)
C Fabret, J A Hoch
A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy.
J Bacteriol: 1998, 180(23);6375-83
[PubMed:9829949]
[WorldCat.org]
[DOI]
(P p)