Difference between revisions of "PdhC"

From SubtiWiki
Jump to: navigation, search
Line 131: Line 131:
 
** number of protein molecules per cell (minimal medium with glucose and ammonium): 11281 {{PubMed|24696501}}
 
** number of protein molecules per cell (minimal medium with glucose and ammonium): 11281 {{PubMed|24696501}}
 
** number of protein molecules per cell (complex medium with amino acids, without glucose): 33899 {{PubMed|24696501}}
 
** number of protein molecules per cell (complex medium with amino acids, without glucose): 33899 {{PubMed|24696501}}
 +
** number of protein molecules per cell (minimal medium with glucose and ammonium, exponential phase): 10012 {{PubMed|21395229}}
 +
** number of protein molecules per cell (minimal medium with glucose and ammonium, early stationary phase after glucose exhaustion): 6860 {{PubMed|21395229}}
 +
** number of protein molecules per cell (minimal medium with glucose and ammonium, late stationary phase after glucose exhaustion): 6154 {{PubMed|21395229}}
  
 
=Biological materials =
 
=Biological materials =
 
 
* '''Mutant:'''
 
* '''Mutant:'''
  

Revision as of 14:11, 17 April 2014

  • Description: pyruvate dehydrogenase (dihydrolipoamide acetyltransferase E2 subunit)

Gene name pdhC
Synonyms
Essential no
Product pyruvate dehydrogenase
(dihydrolipoamide acetyltransferase E2 subunit)
Function links glycolysis and TCA cycle
Gene expression levels in SubtiExpress: pdhC
Interactions involving this protein in SubtInteract: PdhC
Metabolic function and regulation of this protein in SubtiPathways:
pdhC
MW, pI 47 kDa, 4.855
Gene length, protein length 1326 bp, 442 aa
Immediate neighbours pdhB, pdhD
Sequences Protein DNA DNA_with_flanks
Genetic context
PdhC context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
PdhC expression.png















Categories containing this gene/protein

carbon core metabolism, membrane proteins, most abundant proteins

This gene is a member of the following regulons

stringent response

The gene

Basic information

  • Locus tag: BSU14600

Phenotypes of a mutant

  • defects in sporulation and unable to grow on glucose as single carbon source PubMed

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: Acetyl-CoA + enzyme N(6)-(dihydrolipoyl)lysine = CoA + enzyme N(6)-(S-acetyldihydrolipoyl)lysine (according to Swiss-Prot)
  • Protein family: lipoyl-binding domain (according to Swiss-Prot)

Extended information on the protein

  • Kinetic information: Michaelis-Menten PubMed
  • Modification: phosphorylated (Ser/Thr/Tyr) PubMed
  • Effectors of protein activity:
    • Inhibited by thiamine 2-thiothiazolone diphosphate and NADH PubMed
    • Low sensibility to NADPH

Database entries

  • Structure: 1W88 (E1 in complex with subunit binding domain of E2, Geobacillus stearothermophilus), 2PDE (peripheral subunit binding domain, Geobacillus stearothermophilus), 1LAC (lipoyl domain, Geobacillus stearothermophilus), 1B5S (catalytic domain (residues 184-425) , Geobacillus stearothermophilus)
  • UniProt: P21883
  • KEGG entry: [3]

Additional information

Expression and regulation

  • Regulation:
    • pdhA: expression activated by glucose (1.9-fold) PubMed
    • subject to negative stringent control upon amino acid limitation PubMed
  • Regulatory mechanism:
    • stringent response: due to presence of guanine at +1 position of the transcript PubMed
    • belongs to the 100 most abundant proteins PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium): 11281 PubMed
    • number of protein molecules per cell (complex medium with amino acids, without glucose): 33899 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, exponential phase): 10012 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, early stationary phase after glucose exhaustion): 6860 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, late stationary phase after glucose exhaustion): 6154 PubMed

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Arthur Aronson, Purdue University, West Lafayette, USA homepage

Your additional remarks

References

Reviews

Kai Tittmann
Reaction mechanisms of thiamin diphosphate enzymes: redox reactions.
FEBS J: 2009, 276(9);2454-68
[PubMed:19476487] [WorldCat.org] [DOI] (I p)

U Neveling, S Bringer-Meyer, H Sahm
Gene and subunit organization of bacterial pyruvate dehydrogenase complexes.
Biochim Biophys Acta: 1998, 1385(2);367-72
[PubMed:9655937] [WorldCat.org] [DOI] (P p)

L C Packman, D S Hipps
The structural domains in the E2 component of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus.
Biochem Soc Trans: 1991, 19(4);917-22
[PubMed:1794583] [WorldCat.org] [DOI] (P p)

M S Patel, T E Roche
Molecular biology and biochemistry of pyruvate dehydrogenase complexes.
FASEB J: 1990, 4(14);3224-33
[PubMed:2227213] [WorldCat.org] [DOI] (P p)

P A Frey
Mechanism of coupled electron and group transfer in Escherichia coli pyruvate dehydrogenase.
Ann N Y Acad Sci: 1982, 378;250-64
[PubMed:6805383] [WorldCat.org] [DOI] (P p)

Original publications

Shanshan Li, Di Huang, Yong Li, Jianping Wen, Xiaoqiang Jia
Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis.
Microb Cell Fact: 2012, 11;101
[PubMed:22862776] [WorldCat.org] [DOI] (I e)

Shigeo Tojo, Kanako Kumamoto, Kazutake Hirooka, Yasutaro Fujita
Heavy involvement of stringent transcription control depending on the adenine or guanine species of the transcription initiation site in glucose and pyruvate metabolism in Bacillus subtilis.
J Bacteriol: 2010, 192(6);1573-85
[PubMed:20081037] [WorldCat.org] [DOI] (I p)

Hannes Hahne, Susanne Wolff, Michael Hecker, Dörte Becher
From complementarity to comprehensiveness--targeting the membrane proteome of growing Bacillus subtilis by divergent approaches.
Proteomics: 2008, 8(19);4123-36
[PubMed:18763711] [WorldCat.org] [DOI] (I p)

Christine Eymann, Dörte Becher, Jörg Bernhardt, Katrin Gronau, Anja Klutzny, Michael Hecker
Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis.
Proteomics: 2007, 7(19);3509-26
[PubMed:17726680] [WorldCat.org] [DOI] (P p)

Christine Eymann, Annette Dreisbach, Dirk Albrecht, Jörg Bernhardt, Dörte Becher, Sandy Gentner, Le Thi Tam, Knut Büttner, Gerrit Buurman, Christian Scharf, Simone Venz, Uwe Völker, Michael Hecker
A comprehensive proteome map of growing Bacillus subtilis cells.
Proteomics: 2004, 4(10);2849-76
[PubMed:15378759] [WorldCat.org] [DOI] (P p)

Hans-Matti Blencke, Georg Homuth, Holger Ludwig, Ulrike Mäder, Michael Hecker, Jörg Stülke
Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways.
Metab Eng: 2003, 5(2);133-49
[PubMed:12850135] [WorldCat.org] [DOI] (P p)

Haichun Gao, Xin Jiang, Kit Pogliano, Arthur I Aronson
The E1beta and E2 subunits of the Bacillus subtilis pyruvate dehydrogenase complex are involved in regulation of sporulation.
J Bacteriol: 2002, 184(10);2780-8
[PubMed:11976308] [WorldCat.org] [DOI] (P p)

M M Nakano, Y P Dailly, P Zuber, D P Clark
Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth.
J Bacteriol: 1997, 179(21);6749-55
[PubMed:9352926] [WorldCat.org] [DOI] (P p)

P N Lowe, J A Hodgson, R N Perham
Dual role of a single multienzyme complex in the oxidative decarboxylation of pyruvate and branched-chain 2-oxo acids in Bacillus subtilis.
Biochem J: 1983, 215(1);133-40
[PubMed:6414463] [WorldCat.org] [DOI] (P p)