Difference between revisions of "LicT"

From SubtiWiki
Jump to: navigation, search
(Basic information/ Evolution)
Line 60: Line 60:
 
* '''Catalyzed reaction/ biological activity:''' binding to the mRNAs of ''[[bglS]]'' and the ''[[bglP]]-[[bglH]]'' operon, causes transcription antitermination (in presence of salicin and absence of glucose)
 
* '''Catalyzed reaction/ biological activity:''' binding to the mRNAs of ''[[bglS]]'' and the ''[[bglP]]-[[bglH]]'' operon, causes transcription antitermination (in presence of salicin and absence of glucose)
  
* '''Protein family:''' [[PRD-containing transcription factors|transcriptional antiterminator]] bglG family (according to Swiss-Prot) BglG family of antiterminators
+
* '''Protein family:''' [[PRD-containing transcription factors|transcriptional antiterminator]] BglG family of antiterminators (according to Swiss-Prot)  
  
 
* '''Paralogous protein(s):''' [[SacY]], [[GlcT]], [[SacT]]
 
* '''Paralogous protein(s):''' [[SacY]], [[GlcT]], [[SacT]]

Revision as of 19:56, 20 September 2009

Gene name licT
Synonyms
Essential no
Product transcriptional antiterminator (BglG family)
Function substrate-dependent induction of bglP-bglH
Metabolic function and regulation of this protein in SubtiPathways:
Sugar catabolism
MW, pI 32 kDa, 5.944
Gene length, protein length 831 bp, 277 aa
Immediate neighbours bglS, yxiP
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
LicT context.gif
This image was kindly provided by SubtiList







The gene

Basic information

  • Locus tag: BSU39080

Phenotypes of a mutant

no expression of the bglP-bglH operon

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: binding to the mRNAs of bglS and the bglP-bglH operon, causes transcription antitermination (in presence of salicin and absence of glucose)

Extended information on the protein

  • Kinetic information:
  • Domains:
    • N-terminal RNA binding domain Pubmed
    • 2xPRD (PTS regulation domains) PubMed
  • Modification:
    • phosphorylation at His-100 in PRD-1 by phosphorylated BglP, inhibits LicT antitermination activity
    • phosphorylation at His-207 and/or His-269 in PRD-2 by His-P-HPr, stimulates LicT antitermination activity
  • Cofactor(s):
  • Effectors of protein activity:
  • Localization:

Database entries

  • Structure: 1L1C (complex with RAT), 1TLV (PRDs)
  • KEGG entry: [3]
  • E.C. number:

Additional information

Expression and regulation

  • Regulation:
  • Regulatory mechanism:
  • Additional information:

Biological materials

  • Mutant:
  • Expression vector:
    • for expression, purification of both PRDs in E. coli with N-terminal His-tag, in pWH844: pGP165, available in Stülke lab
    • for expression, purification of the RNA-binding domain in E. coli with N-terminal His-tag, in pWH844: pGP315, available in Stülke lab
    • for expression, purification of the RNA-binding domain in E. coli with N-terminal His-tag and thrombin cleavage site, in pGP570: pGP572, available in Stülke lab
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Stephane Aymerich, Microbiology and Molecular Genetics, INRA Paris-Grignon, France

Josef Deutscher, Microbiology and Molecular Genetics, INRA Paris-Grignon, France

Michael Hecker, Greifswald, Germany Homepage

Your additional remarks

References

Original description


Control of LicT activity

Cordula Lindner, Michael Hecker, Dominique Le Coq, Josef Deutscher
Bacillus subtilis mutant LicT antiterminators exhibiting enzyme I- and HPr-independent antitermination affect catabolite repression of the bglPH operon.
J Bacteriol: 2002, 184(17);4819-28
[PubMed:12169607] [WorldCat.org] [DOI] (P p)

P Tortosa, N Declerck, H Dutartre, C Lindner, J Deutscher, D Le Coq
Sites of positive and negative regulation in the Bacillus subtilis antiterminators LicT and SacY.
Mol Microbiol: 2001, 41(6);1381-93
[PubMed:11580842] [WorldCat.org] [DOI] (P p)

C Lindner, A Galinier, M Hecker, J Deutscher
Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme I- and HPr-catalysed phosphorylation.
Mol Microbiol: 1999, 31(3);995-1006
[PubMed:10048041] [WorldCat.org] [DOI] (P p)

S Krüger, S Gertz, M Hecker
Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression.
J Bacteriol: 1996, 178(9);2637-44
[PubMed:8626332] [WorldCat.org] [DOI] (P p)


Structural analysis of LicT


LicT-RNA interaction

Hélène Déméné, Thierry Ducat, Karine De Guillen, Catherine Birck, Stéphane Aymerich, Michel Kochoyan, Nathalie Declerck
Structural mechanism of signal transduction between the RNA-binding domain and the phosphotransferase system regulation domain of the LicT antiterminator.
J Biol Chem: 2008, 283(45);30838-49
[PubMed:18682383] [WorldCat.org] [DOI] (P p)

Yinshan Yang, Nathalie Declerck, Xavier Manival, Stéphane Aymerich, Michel Kochoyan
Solution structure of the LicT-RNA antitermination complex: CAT clamping RAT.
EMBO J: 2002, 21(8);1987-97
[PubMed:11953318] [WorldCat.org] [DOI] (P p)

N Declerck, F Vincent, F Hoh, S Aymerich, H van Tilbeurgh
RNA recognition by transcriptional antiterminators of the BglG/SacY family: functional and structural comparison of the CAT domain from SacY and LicT.
J Mol Biol: 1999, 294(2);389-402
[PubMed:10610766] [WorldCat.org] [DOI] (P p)

S Aymerich, M Steinmetz
Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family.
Proc Natl Acad Sci U S A: 1992, 89(21);10410-4
[PubMed:1279678] [WorldCat.org] [DOI] (P p)