Difference between revisions of "RNA polymerase"

From SubtiWiki
Jump to: navigation, search
(Reviews)
(Important original publications)
 
(9 intermediate revisions by the same user not shown)
Line 34: Line 34:
 
===Other interaction partners===
 
===Other interaction partners===
 
* [[NusA]]: essential elongation factor
 
* [[NusA]]: essential elongation factor
 +
* [[NusG]]: transcription elongation factor {{PubMed|36745813}}
 
* [[GreA]]: resolves promoter proximal pausing of RNA polymerase {{PubMed|21515770}}
 
* [[GreA]]: resolves promoter proximal pausing of RNA polymerase {{PubMed|21515770}}
 
* [[CshA]]: [[DEAD-box RNA helicases|DEAD-box RNA helicase]] {{PubMed|21710567}}
 
* [[CshA]]: [[DEAD-box RNA helicases|DEAD-box RNA helicase]] {{PubMed|21710567}}
Line 51: Line 52:
 
==References==
 
==References==
 
===Reviews===
 
===Reviews===
<pubmed> 18599813 7708009 18410247 19889534 19489723 18280161 21233849 22210308 23433801 23768203 24763425 25878038 26132790 26010401 16524917,28657884</pubmed>
+
<pubmed> 18599813 7708009 18410247 19889534 19489723 18280161 21233849 22210308 23433801 23768203 24763425 25878038 26132790 26010401 16524917,28657884,29856930 32920946</pubmed>
  
 
===The structure of RNA polymerase===
 
===The structure of RNA polymerase===
<pubmed> 12732296 12581657 11297923 19735077 26293966     28652344
+
<pubmed> 12732296 12581657 11297923 19735077 26293966 28652344 36745813
 
</pubmed>
 
</pubmed>
  
 
=== Important original publications ===
 
=== Important original publications ===
<pubmed> 21350489 21515770 22333917,20817769,20724389,21710567 23761441 23875654 23771146 24789973 25961799 26400263  27622946  27977677</pubmed>
+
<pubmed> 21350489 21515770 22333917,20817769,20724389,21710567 23761441 23875654 23771146 24789973 25961799 26400263  27622946  27977677 29454936 31548377 32848247 33243850,36972428, 37949068 </pubmed>

Latest revision as of 17:54, 20 November 2023

Parent categories
Neighbouring categories
Related categories






The enzyme responsible for transcription

  • As an important difference as compared to the E. coli enzyme, the B. subtilis RNA polymerase has a strong preference for G as first nucleotides in transcripts PubMed

Components of the RNA polymerase

Core subunits

Sigma factors

  • In addition to the housekeeping sigma factor, SigA, there are several other sigma factors with different promoter recognition specifiity that are active under specific conditions (such as stress or sporulation)

Small accessory subunits

  • RpoE: delta subunit
  • RpoY: epsilon subunit
  • YloH: omega subunit

Other interaction partners

Temporary interaction partners

  • Spx: transcription regulator, interacts with RpoA
  • MgsR: transcription regulator orthologous to Spx, interacts with RpoA
  • Btr: transcription activator PubMed
  • YlyA: modulates SigG-dependent transcription PubMed

Back to protein-protein interactions

References

Reviews


The structure of RNA polymerase

Rishi K Vishwakarma, M Zuhaib Qayyum, Paul Babitzke, Katsuhiko S Murakami
Allosteric mechanism of transcription inhibition by NusG-dependent pausing of RNA polymerase.
Proc Natl Acad Sci U S A: 2023, 120(7);e2218516120
[PubMed:36745813] [WorldCat.org] [DOI] (I p)

Katsuhiko S Murakami, Yeonoh Shin, Charles L Turnbough, Vadim Molodtsov
X-ray crystal structure of a reiterative transcription complex reveals an atypical RNA extension pathway.
Proc Natl Acad Sci U S A: 2017, 114(31);8211-8216
[PubMed:28652344] [WorldCat.org] [DOI] (I p)

Yun Yang, Vidya C Darbari, Nan Zhang, Duo Lu, Robert Glyde, Yi-Ping Wang, Jared T Winkelman, Richard L Gourse, Katsuhiko S Murakami, Martin Buck, Xiaodong Zhang
TRANSCRIPTION. Structures of the RNA polymerase-σ54 reveal new and conserved regulatory strategies.
Science: 2015, 349(6250);882-5
[PubMed:26293966] [WorldCat.org] [DOI] (I p)

Elecia B Johnston, Peter J Lewis, Renate Griffith
The interaction of Bacillus subtilis sigmaA with RNA polymerase.
Protein Sci: 2009, 18(11);2287-97
[PubMed:19735077] [WorldCat.org] [DOI] (I p)

Sergei Borukhov, Evgeny Nudler
RNA polymerase holoenzyme: structure, function and biological implications.
Curr Opin Microbiol: 2003, 6(2);93-100
[PubMed:12732296] [WorldCat.org] [DOI] (P p)

Katsuhiko S Murakami, Seth A Darst
Bacterial RNA polymerases: the wholo story.
Curr Opin Struct Biol: 2003, 13(1);31-9
[PubMed:12581657] [WorldCat.org] [DOI] (P p)

S A Darst
Bacterial RNA polymerase.
Curr Opin Struct Biol: 2001, 11(2);155-62
[PubMed:11297923] [WorldCat.org] [DOI] (P p)


Important original publications

Bing Zhou, Yifei Xiong, Yuval Nevo, Tamar Kahan, Oren Yakovian, Sima Alon, Saurabh Bhattacharya, Ilan Rosenshine, Lior Sinai, Sigal Ben-Yehuda
Dormant bacterial spores encrypt a long-lasting transcriptional program to be executed during revival.
Mol Cell: 2023, 83(22);4158-4173.e7
[PubMed:37949068] [WorldCat.org] [DOI] (I p)

Andreas U Mueller, James Chen, Mengyu Wu, Courtney Chiu, B Tracy Nixon, Elizabeth A Campbell, Seth A Darst
A general mechanism for transcription bubble nucleation in bacteria.
Proc Natl Acad Sci U S A: 2023, 120(14);e2220874120
[PubMed:36972428] [WorldCat.org] [DOI] (I p)

Nelly Said, Tarek Hilal, Nicholas D Sunday, Ajay Khatri, Jörg Bürger, Thorsten Mielke, Georgiy A Belogurov, Bernhard Loll, Ranjan Sen, Irina Artsimovitch, Markus C Wahl
Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase ρ.
Science: 2021, 371(6524);
[PubMed:33243850] [WorldCat.org] [DOI] (I p)

Grace E Johnson, Jean-Benoît Lalanne, Michelle L Peters, Gene-Wei Li
Functionally uncoupled transcription-translation in Bacillus subtilis.
Nature: 2020, 585(7823);124-128
[PubMed:32848247] [WorldCat.org] [DOI] (I p)

Hugo B Brandão, Payel Paul, Aafke A van den Berg, David Z Rudner, Xindan Wang, Leonid A Mirny
RNA polymerases as moving barriers to condensin loop extrusion.
Proc Natl Acad Sci U S A: 2019, 116(41);20489-20499
[PubMed:31548377] [WorldCat.org] [DOI] (I p)

Jin Park, Marta Dies, Yihan Lin, Sahand Hormoz, Stephanie E Smith-Unna, Sofia Quinodoz, María Jesús Hernández-Jiménez, Jordi Garcia-Ojalvo, James C W Locke, Michael B Elowitz
Molecular Time Sharing through Dynamic Pulsing in Single Cells.
Cell Syst: 2018, 6(2);216-229.e15
[PubMed:29454936] [WorldCat.org] [DOI] (P p)

Jatin Narula, Abhinav Tiwari, Oleg A Igoshin
Role of Autoregulation and Relative Synthesis of Operon Partners in Alternative Sigma Factor Networks.
PLoS Comput Biol: 2016, 12(12);e1005267
[PubMed:27977677] [WorldCat.org] [DOI] (I e)

Cong Ma, Xiao Yang, Peter J Lewis
Bacterial Transcription Inhibitor of RNA Polymerase Holoenzyme Formation by Structure-Based Drug Design: From in Silico Screening to Validation.
ACS Infect Dis: 2016, 2(1);39-46
[PubMed:27622946] [WorldCat.org] [DOI] (I p)

Shreya Sengupta, Ranjit Kumar Prajapati, Jayanta Mukhopadhyay
Promoter Escape with Bacterial Two-component σ Factor Suggests Retention of σ Region Two in the Elongation Complex.
J Biol Chem: 2015, 290(47);28575-28583
[PubMed:26400263] [WorldCat.org] [DOI] (I p)

Evan T Graves, Camille Duboc, Jun Fan, François Stransky, Mathieu Leroux-Coyau, Terence R Strick
A dynamic DNA-repair complex observed by correlative single-molecule nanomanipulation and fluorescence.
Nat Struct Mol Biol: 2015, 22(6);452-7
[PubMed:25961799] [WorldCat.org] [DOI] (I p)

Matthew H Larson, Rachel A Mooney, Jason M Peters, Tricia Windgassen, Dhananjaya Nayak, Carol A Gross, Steven M Block, William J Greenleaf, Robert Landick, Jonathan S Weissman
A pause sequence enriched at translation start sites drives transcription dynamics in vivo.
Science: 2014, 344(6187);1042-7
[PubMed:24789973] [WorldCat.org] [DOI] (I p)

Hsin-Yi Yeh, Hsiu-Ting Hsu, Tsung-Ching Chen, Kuei-Min Chung, Kung-Ming Liou, Ban-Yang Chang
The reduction in σ-promoter recognition flexibility as induced by core RNAP is required for σ to discern the optimal promoter spacing.
Biochem J: 2013, 455(2);185-93
[PubMed:23875654] [WorldCat.org] [DOI] (I p)

Vladimir Mekler, Konstantin Severinov
Cooperativity and interaction energy threshold effects in recognition of the -10 promoter element by bacterial RNA polymerase.
Nucleic Acids Res: 2013, 41(15);7276-85
[PubMed:23771146] [WorldCat.org] [DOI] (I p)

Ignacio J Cabrera-Ostertag, Amy T Cavanagh, Karen M Wassarman
Initiating nucleotide identity determines efficiency of RNA synthesis from 6S RNA templates in Bacillus subtilis but not Escherichia coli.
Nucleic Acids Res: 2013, 41(15);7501-11
[PubMed:23761441] [WorldCat.org] [DOI] (I p)

Benedikt M Beckmann, Philipp G Hoch, Manja Marz, Dagmar K Willkomm, Margarita Salas, Roland K Hartmann
A pRNA-induced structural rearrangement triggers 6S-1 RNA release from RNA polymerase in Bacillus subtilis.
EMBO J: 2012, 31(7);1727-38
[PubMed:22333917] [WorldCat.org] [DOI] (I p)

Olivier Delumeau, François Lecointe, Jan Muntel, Alain Guillot, Eric Guédon, Véronique Monnet, Michael Hecker, Dörte Becher, Patrice Polard, Philippe Noirot
The dynamic protein partnership of RNA polymerase in Bacillus subtilis.
Proteomics: 2011, 11(15);2992-3001
[PubMed:21710567] [WorldCat.org] [DOI] (I p)

Yoko Kusuya, Ken Kurokawa, Shu Ishikawa, Naotake Ogasawara, Taku Oshima
Transcription factor GreA contributes to resolving promoter-proximal pausing of RNA polymerase in Bacillus subtilis cells.
J Bacteriol: 2011, 193(12);3090-9
[PubMed:21515770] [WorldCat.org] [DOI] (I p)

Houra Merrikh, Cristina Machón, William H Grainger, Alan D Grossman, Panos Soultanas
Co-directional replication-transcription conflicts lead to replication restart.
Nature: 2011, 470(7335);554-7
[PubMed:21350489] [WorldCat.org] [DOI] (I p)

Shu Ishikawa, Taku Oshima, Ken Kurokawa, Yoko Kusuya, Naotake Ogasawara
RNA polymerase trafficking in Bacillus subtilis cells.
J Bacteriol: 2010, 192(21);5778-87
[PubMed:20817769] [WorldCat.org] [DOI] (I p)

Geoff P Doherty, Mark J Fogg, Anthony J Wilkinson, Peter J Lewis
Small subunits of RNA polymerase: localization, levels and implications for core enzyme composition.
Microbiology (Reading): 2010, 156(Pt 12);3532-3543
[PubMed:20724389] [WorldCat.org] [DOI] (I p)