sinR
168
transcriptional regulator (Xre family) of post-exponential-phase responses genes
Locus
BSU_24610
Molecular weight
12.85 kDa
Isoelectric point
7.18
Function
control of biofilm formation
Product
transcriptional regulator (Xre family)
Essential
no
Synonyms
sinR, sin, flaD
Outlinks
Genomic Context
Categories containing this gene/protein
List of homologs in different organisms, belongs to COG1396 (Galperin et al., 2021)
This gene is a member of the following regulons
Gene
Coordinates
2,552,653 2,552,988
Phenotypes of a mutant
Additional information
The protein
Catalyzed reaction/ biological activity
Protein family
DNA-binding N-terminal domain (aa 1-69) PubMed
HTH cro/C1-type domain (aa 6-61) (according to UniProt)
Sin domain (aa 65-103) (according to UniProt)
Structure
2YAL (PDB) (C-terminal domain, aa 74-111) PubMed
3QQ6 (PDB) (N-terminal domain, aa 1-69) PubMed
Effectors of protein activity
Paralogous protein(s)
Expression and Regulation
Operons
Biological materials
Mutant
GP923 (sinR::spec) PubMed, available in Jörg Stülke's lab
GP736 (sinR::tetR) PubMed, available in Jörg Stülke's lab
Expression vectors
N-terminal Strep-tag, for SPINE, expression in B. subtilis, in pGP380: pGP1083 , available in Jörg Stülke's lab
pGP2330: in pBQ200, for expression in B. subtilis, available in Jörg Stülke's lab
Two-hybrid system
B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH), available in Jörg Stülke's lab
FLAG-tag construct
GP960 (spc, based on pGP1331), available in Jörg Stülke's lab
LacZ fusion
pGP1930 (aphA3) based on pAC7, available in Jörg Stülke's lab
References
Reviews
Electrical signalling in prokaryotes and its convergence with quorum sensing in Bacillus.BioEssays : news and reviews in molecular, cellular and developmental biology. 2022 Feb 23; :e2100193. PMID: 35195292
Biofilms: a Matter of Individual Choice.
mBio. 2018 Nov 27; 9(6). pii:e02339-18. doi:10.1128/mBio.02339-18. PMID:30482826
Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond.
Molecular microbiology. 2018 Sep 14; . doi:10.1111/mmi.14127. PMID:30218468
Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms.
Molecular microbiology. 2014 Aug; 93(4):587-98. doi:10.1111/mmi.12697. PMID:24988880
Sticking together: building a biofilm the Bacillus subtilis way.
Nature reviews. Microbiology. 2013 Mar; 11(3):157-68. doi:10.1038/nrmicro2960. PMID:23353768
Epigenetic switching: bacteria hedge bets about staying or moving.
Current biology : CB. 2010 Jun 08; 20(11):R480-2. doi:10.1016/j.cub.2010.04.020. PMID:20541494
Swim or chill: lifestyles of a bacillus.
Genes & development. 2010 Apr 15; 24(8):735-7. doi:10.1101/gad.1923110. PMID:20395361
Original Publications
PgpP is a broadly conserved phosphatase required for phosphatidylglycerol lipid synthesis.Proceedings of the National Academy of Sciences of the United States of America. 2025 Feb 4; 122(5):e2418775122. PMID: 39869797
Arginine kinase McsB and ClpC complex impairs the transition to biofilm formation in Bacillus subtilis.Microbiological research. 2024 Nov 29; 292:127979. PMID: 39674004
. . PMID: 39012109
Enhanced surface colonisation and competition during bacterial adaptation to a fungus.Nature communications. 2024 May 27; 15(1):4486. PMID: 38802389
Adaptive laboratory evolution reveals regulators involved in repressing biofilm development as key players in Bacillus subtilis root colonization.mSystems. 2024 Jan 11; :e0084323. PMID: 38206029
The motility-matrix production switch in Bacillus subtilis-a modeling perspective.Journal of bacteriology. 2023 Dec 13; :e0004723. PMID: 38088582
Species and condition shape the mutational spectrum in experimentally evolved biofilms.mSystems. 2023 Sep 28; :e0054823. PMID: 37768063
Parallel genetic adaptation of Bacillus subtilis to different plant species.Microbial genomics. 2023 Jul; 9(7). PMID: 37466402
The Slowdown of Growth Rate Controls the Single-Cell Distribution of Biofilm Matrix Production via an SinI-SinR-SlrR Network.mSystems. 2023 Feb 14; :e0062222. PMID: 36786593
Efficient Inhibition of Bacterial Biofilm Through Interference of Protein-Protein Interaction of Master Regulator Proteins: a Proof of Concept Study with SinR- SinI Complex of Bacillus subtilis.Applied biochemistry and biotechnology. 2022 Nov 19; . PMID: 36401726
Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization.iScience. 2022 Jun 17; 25(6):104406. PMID: 35663012
Site-directed mutagenesis of the quorum-sensing transcriptional regulator SinR affects the biosynthesis of menaquinone in Bacillus subtilis.Microbial cell factories. 2021 Jun 7; 20(1):113. PMID: 34098969
Stochastic antagonism between two proteins governs a bacterial cell fate switch.
Science (New York, N.Y.). 2019 Oct 04; 366(6461):116-120. doi:10.1126/science.aaw4506. PMID:31604312
The Solution Structures and Interaction of SinR and SinI: Elucidating the Mechanism of Action of the Master Regulator Switch for Biofilm Formation in Bacillus subtilis.
Journal of molecular biology. 2019 Sep 04; . pii:S0022-2836(19)30543-1. doi:10.1016/j.jmb.2019.08.019. PMID:31493408
Regulation of biofilm aging and dispersal in by the alternative sigma factor SigB.
Journal of bacteriology. 2018 Nov 05; . pii:JB.00473-18. doi:10.1128/JB.00473-18. PMID:30396900
Hampered motility promotes the evolution of wrinkly phenotype in Bacillus subtilis.
BMC evolutionary biology. 2018 Oct 16; 18(1):155. doi:10.1186/s12862-018-1266-2. PMID:30326845
Selective Pressure for Biofilm Formation in Bacillus subtilis: Differential Effect of Mutations in the Master Regulator SinR on Bistability.
mBio. 2018 Sep 04; 9(5). pii:e01464-18. doi:10.1128/mBio.01464-18. PMID:30181249
Dual Regulation of Bacillus subtilis kinB Gene Encoding a Sporulation Trigger by SinR through Transcription Repression and Positive Stringent Transcription Control.
Frontiers in microbiology. 2017; 8:2502. doi:10.3389/fmicb.2017.02502. PMID:29321771
Spermidine promotes Bacillus subtilis biofilm formation by activating expression of the matrix regulator slrR.
The Journal of biological chemistry. 2017 Jul 21; 292(29):12041-12053. doi:10.1074/jbc.M117.789644. PMID:28546427
Post-transcriptionally generated cell heterogeneity regulates biofilm formation in Bacillus subtilis.
Genes to cells : devoted to molecular & cellular mechanisms. 2016 Apr; 21(4):335-49. doi:10.1111/gtc.12343. PMID:26819068
Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR.
Molecular microbiology. 2016 Jan; 99(2):425-37. doi:10.1111/mmi.13240. PMID:26434553
The Bacterial Tyrosine Kinase Activator TkmA Contributes to Biofilm Formation Largely Independently of the Cognate Kinase PtkA in Bacillus subtilis.
Journal of bacteriology. 2015 Nov; 197(21):3421-32. doi:10.1128/JB.00438-15. PMID:26283769
SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis.
BMC microbiology. 2014 Nov 30; 14:301. doi:10.1186/s12866-014-0301-8. PMID:25433524
A serine sensor for multicellularity in a bacterium.
eLife. 2013 Dec 17; 2:e01501. doi:10.7554/eLife.01501. PMID:24347549
Regulation of the response regulator gene degU through the binding of SinR/SlrR and exclusion of SinR/SlrR by DegU in Bacillus subtilis.
Journal of bacteriology. 2014 Feb; 196(4):873-81. doi:10.1128/JB.01321-13. PMID:24317403
Memory and modularity in cell-fate decision making.
Nature. 2013 Nov 28; 503(7477):481-6. doi:10.1038/nature12804. PMID:24256735
Spo0A positively regulates epr expression by negating the repressive effect of co-repressors, SinR and ScoC, in Bacillus subtilis.
Journal of biosciences. 2013 Jun; 38(2):291-9. . PMID:23660663
RemA is a DNA-binding protein that activates biofilm matrix gene expression in Bacillus subtilis.
Molecular microbiology. 2013 Jun; 88(5):984-97. doi:10.1111/mmi.12235. PMID:23646920
Chemical shift assignments and secondary structure prediction of the master biofilm regulator, SinR, from Bacillus subtilis.
Biomolecular NMR assignments. 2014 Apr; 8(1):155-8. doi:10.1007/s12104-013-9473-7. PMID:23475644
Molecular basis of the activity of SinR protein, the master regulator of biofilm formation in Bacillus subtilis.
The Journal of biological chemistry. 2013 Apr 12; 288(15):10766-78. doi:10.1074/jbc.M113.455592. PMID:23430750
Functional analysis of the protein Veg, which stimulates biofilm formation in Bacillus subtilis.
Journal of bacteriology. 2013 Apr; 195(8):1697-705. doi:10.1128/JB.02201-12. PMID:23378512
Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis.
mBio. 2012; 3(4):e00184-12. doi:10.1128/mBio.00184-12. pii:e00184-12. PMID:22893383
SlrA/SinR/SlrR inhibits motility gene expression upstream of a hypersensitive and hysteretic switch at the level of σ(D) in Bacillus subtilis.
Molecular microbiology. 2012 Mar; 83(6):1210-28. doi:10.1111/j.1365-2958.2012.08003.x. PMID:22329926
A novel factor controlling bistability in Bacillus subtilis: the YmdB protein affects flagellin expression and biofilm formation.
Journal of bacteriology. 2011 Nov; 193(21):5997-6007. doi:10.1128/JB.05360-11. PMID:21856853
RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y.
Molecular microbiology. 2011 Sep; 81(6):1459-73. doi:10.1111/j.1365-2958.2011.07777.x. PMID:21815947
Structure and organisation of SinR, the master regulator of biofilm formation in Bacillus subtilis.
Journal of molecular biology. 2011 Aug 19; 411(3):597-613. doi:10.1016/j.jmb.2011.06.004. PMID:21708175
Evidence that metabolism and chromosome copy number control mutually exclusive cell fates in Bacillus subtilis.
The EMBO journal. 2011 Apr 06; 30(7):1402-13. doi:10.1038/emboj.2011.36. PMID:21326214
Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability.
Molecular microbiology. 2010 Oct; 78(1):218-29. doi:10.1111/j.1365-2958.2010.07335.x. PMID:20923420
An epigenetic switch governing daughter cell separation in Bacillus subtilis.
Genes & development. 2010 Apr 15; 24(8):754-65. doi:10.1101/gad.1915010. PMID:20351052
A dual mode of regulation of flgM by ScoC in Bacillus subtilis.
Canadian journal of microbiology. 2009 Aug; 55(8):983-9. doi:10.1139/w09-049. PMID:19898538
Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis.
Molecular microbiology. 2009 Nov; 74(4):876-87. doi:10.1111/j.1365-2958.2009.06900.x. PMID:19788541
A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation.
Journal of bacteriology. 2009 Apr; 191(8):2423-30. doi:10.1128/JB.01464-08. PMID:19201793
A novel regulatory protein governing biofilm formation in Bacillus subtilis.
Molecular microbiology. 2008 Jun; 68(5):1117-27. doi:10.1111/j.1365-2958.2008.06201.x. PMID:18430133
Bistability and biofilm formation in Bacillus subtilis.
Molecular microbiology. 2008 Jan; 67(2):254-63. . PMID:18047568
ScoC and SinR negatively regulate epr by corepression in Bacillus subtilis.
Journal of bacteriology. 2006 Sep; 188(17):6425-8. . PMID:16923912
A major protein component of the Bacillus subtilis biofilm matrix.
Molecular microbiology. 2006 Feb; 59(4):1229-38. . PMID:16430696
Targets of the master regulator of biofilm formation in Bacillus subtilis.
Molecular microbiology. 2006 Feb; 59(4):1216-28. . PMID:16430695
A master regulator for biofilm formation by Bacillus subtilis.
Molecular microbiology. 2005 Feb; 55(3):739-49. . PMID:15661000
Bacillus subtilis transcriptional regulators interaction.
Biotechnology letters. 2004 Mar; 26(5):403-7. . PMID:15104138
Postexponential regulation of sin operon expression in Bacillus subtilis.
Journal of bacteriology. 2002 Jan; 184(2):564-71. . PMID:11751836
Quaternary re-arrangement analysed by spectral enhancement: the interaction of a sporulation repressor with its antagonist.
Journal of molecular biology. 1999 Nov 12; 293(5):997-1004. . PMID:10547280
An evolutionary link between sporulation and prophage induction in the structure of a repressor:anti-repressor complex.
Journal of molecular biology. 1998 Nov 13; 283(5):907-12. . PMID:9799632
The Bacillus subtilis regulator SinR inhibits spoIIG promoter transcription in vitro without displacing RNA polymerase.
Nucleic acids research. 1998 Aug 15; 26(16):3806-12. . PMID:9685500
Effect of the SinR protein on the expression of the Bacillus subtilis 168 lytABC operon.
Microbial drug resistance (Larchmont, N.Y.). 1996; 2(1):119-21. . PMID:9158733
FlgM is a primary regulator of sigmaD activity, and its absence restores motility to a sinR mutant.
Journal of bacteriology. 1996 Dec; 178(23):7010-3. . PMID:8955328
flaD (sinR) mutations affect SigD-dependent functions at multiple points in Bacillus subtilis.
Journal of bacteriology. 1996 Nov; 178(22):6640-3. . PMID:8932324
Regulatory inputs for the synthesis of ComK, the competence transcription factor of Bacillus subtilis.
Molecular microbiology. 1996 Aug; 21(4):763-75. . PMID:8878039
SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction.
Genes & development. 1993 Jan; 7(1):139-48. . PMID:8422983
In vitro binding affinity of the Bacillus subtilis AbrB protein to six different DNA target regions.
Journal of bacteriology. 1995 Aug; 177(15):4532-6. . PMID:7635837
Structure and expression of the Bacillus subtilis sin operon.
Journal of bacteriology. 1988 Mar; 170(3):1046-53. . PMID:3125149
The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein.
The Journal of biological chemistry. 1991 Jul 15; 266(20):13411-7. . PMID:1906467
Page visits: 15537
Time of last update: 2025-07-27 23:14:52
Author of last update: Jstuelk