Difference between revisions of "PreQ1 riboswitch"
(→Structure of this riboswitch) |
|||
(6 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
==Structure of this riboswitch== | ==Structure of this riboswitch== | ||
− | + | <pubmed>19285444,17384645 23028870 19234468 23584677 21410253,21375305 24003028 24663240 26106809</pubmed> | |
− | <pubmed>19285444,17384645 | + | |
=See also:= | =See also:= | ||
* [[RNA switch]] | * [[RNA switch]] | ||
=Back to [[regulons]]= | =Back to [[regulons]]= |
Latest revision as of 08:20, 2 July 2015
This riboswitch controls the expression of the queC-queD-queE-queF operon in response to the availability of queuosine. In the absence of queuosine, the riboswitch allows transcriptional antitermination.
Structure of this riboswitch
Ming-Cheng Wu, Phillip T Lowe, Christopher J Robinson, Helen A Vincent, Neil Dixon, James Leigh, Jason Micklefield
Rational Re-engineering of a Transcriptional Silencing PreQ1 Riboswitch.
J Am Chem Soc: 2015, 137(28);9015-21
[PubMed:26106809]
[WorldCat.org]
[DOI]
(I p)
Zhou Gong, Yunjie Zhao, Changjun Chen, Yong Duan, Yi Xiao
Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations.
PLoS One: 2014, 9(3);e92247
[PubMed:24663240]
[WorldCat.org]
[DOI]
(I e)
Krishna C Suddala, Arlie J Rinaldi, Jun Feng, Anthony M Mustoe, Catherine D Eichhorn, Joseph A Liberman, Joseph E Wedekind, Hashim M Al-Hashimi, Charles L Brooks, Nils G Walter
Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure.
Nucleic Acids Res: 2013, 41(22);10462-75
[PubMed:24003028]
[WorldCat.org]
[DOI]
(I p)
Joseph A Liberman, Mohammad Salim, Jolanta Krucinska, Joseph E Wedekind
Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold.
Nat Chem Biol: 2013, 9(6);353-5
[PubMed:23584677]
[WorldCat.org]
[DOI]
(I p)
Zhou Gong, Yunjie Zhao, Changjun Chen, Yi Xiao
Computational study of unfolding and regulation mechanism of preQ1 riboswitches.
PLoS One: 2012, 7(9);e45239
[PubMed:23028870]
[WorldCat.org]
[DOI]
(I p)
Qi Zhang, Mijeong Kang, Robert D Peterson, Juli Feigon
Comparison of solution and crystal structures of preQ1 riboswitch reveals calcium-induced changes in conformation and dynamics.
J Am Chem Soc: 2011, 133(14);5190-3
[PubMed:21410253]
[WorldCat.org]
[DOI]
(I p)
Jun Feng, Nils G Walter, Charles L Brooks
Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
J Am Chem Soc: 2011, 133(12);4196-9
[PubMed:21375305]
[WorldCat.org]
[DOI]
(I p)
Mijeong Kang, Robert Peterson, Juli Feigon
Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA.
Mol Cell: 2009, 33(6);784-90
[PubMed:19285444]
[WorldCat.org]
[DOI]
(I p)
Daniel J Klein, Thomas E Edwards, Adrian R Ferré-D'Amaré
Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase.
Nat Struct Mol Biol: 2009, 16(3);343-4
[PubMed:19234468]
[WorldCat.org]
[DOI]
(I p)
Adam Roth, Wade C Winkler, Elizabeth E Regulski, Bobby W K Lee, Jinsoo Lim, Inbal Jona, Jeffrey E Barrick, Ankita Ritwik, Jane N Kim, Rüdiger Welz, Dirk Iwata-Reuyl, Ronald R Breaker
A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain.
Nat Struct Mol Biol: 2007, 14(4);308-17
[PubMed:17384645]
[WorldCat.org]
[DOI]
(P p)