Difference between revisions of "RNA polymerase"
(→Important original publications: {{PubMed|20817769,20724389,21710567}}) |
(→Important original publications) |
||
(37 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
__TOC__ | __TOC__ | ||
<br><br><br><br><br> | <br><br><br><br><br> | ||
− | |||
=='''The enzyme responsible for [[transcription]]'''== | =='''The enzyme responsible for [[transcription]]'''== | ||
+ | * As an important difference as compared to the ''E. coli'' enzyme, the ''B. subtilis'' RNA polymerase has a strong preference for G as first nucleotides in transcripts {{PubMed|23761441}} | ||
==Components of the RNA polymerase== | ==Components of the RNA polymerase== | ||
Line 29: | Line 29: | ||
===Small accessory subunits=== | ===Small accessory subunits=== | ||
* [[RpoE]]: delta subunit | * [[RpoE]]: delta subunit | ||
+ | * [[RpoY]]: epsilon subunit | ||
* [[YloH]]: omega subunit | * [[YloH]]: omega subunit | ||
===Other interaction partners=== | ===Other interaction partners=== | ||
* [[NusA]]: essential elongation factor | * [[NusA]]: essential elongation factor | ||
− | * [[GreA]]: | + | * [[NusG]]: transcription elongation factor {{PubMed|36745813}} |
− | * [[CshA]] | + | * [[GreA]]: resolves promoter proximal pausing of RNA polymerase {{PubMed|21515770}} |
+ | * [[CshA]]: [[DEAD-box RNA helicases|DEAD-box RNA helicase]] {{PubMed|21710567}} | ||
+ | * [[PcrA]]: ATP-dependent DNA helicase {{PubMed|24147116,21710567}} | ||
===Temporary interaction partners=== | ===Temporary interaction partners=== | ||
* [[Spx]]: transcription regulator, interacts with [[RpoA]] | * [[Spx]]: transcription regulator, interacts with [[RpoA]] | ||
* [[MgsR]]: transcription regulator orthologous to [[Spx]], interacts with [[RpoA]] | * [[MgsR]]: transcription regulator orthologous to [[Spx]], interacts with [[RpoA]] | ||
+ | * [[Btr]]: transcription activator {{PubMed|22210890}} | ||
+ | * [[YlyA]]: modulates [[SigG]]-dependent transcription {{PubMed|23678950}} | ||
* '''Additional interaction partners of the RNA polymerase (no specific subunit specified)''' | * '''Additional interaction partners of the RNA polymerase (no specific subunit specified)''' | ||
− | ** [[HelD | + | ** [[HelD]], [[TopA]], [[CssR]], [[RnhC]], [[YpsC]], [[Mfd]], [[YpiA]], [[YdjO]], [[ResD]] {{PubMed|21710567}} |
==Back to [[protein-protein interactions]]== | ==Back to [[protein-protein interactions]]== | ||
Line 47: | Line 52: | ||
==References== | ==References== | ||
===Reviews=== | ===Reviews=== | ||
− | <pubmed> 18599813 7708009 18410247 19889534 19489723 18280161 21233849 </pubmed> | + | <pubmed> 18599813 7708009 18410247 19889534 19489723 18280161 21233849 22210308 23433801 23768203 24763425 25878038 26132790 26010401 16524917,28657884,29856930 32920946</pubmed> |
+ | |||
===The structure of RNA polymerase=== | ===The structure of RNA polymerase=== | ||
− | <pubmed> 12732296 12581657 11297923 19735077 </pubmed> | + | <pubmed> 12732296 12581657 11297923 19735077 26293966 28652344 36745813 |
− | ===Important original publications | + | </pubmed> |
− | <pubmed> 21350489 21515770 </pubmed> | + | |
+ | === Important original publications === | ||
+ | <pubmed> 21350489 21515770 22333917,20817769,20724389,21710567 23761441 23875654 23771146 24789973 25961799 26400263 27622946 27977677 29454936 31548377 32848247 33243850,36972428, 37949068 </pubmed> |
Latest revision as of 17:54, 20 November 2023
Parent categories |
|
Neighbouring categories | |
Related categories | |
Contents
The enzyme responsible for transcription
- As an important difference as compared to the E. coli enzyme, the B. subtilis RNA polymerase has a strong preference for G as first nucleotides in transcripts PubMed
Components of the RNA polymerase
Core subunits
Sigma factors
- In addition to the housekeeping sigma factor, SigA, there are several other sigma factors with different promoter recognition specifiity that are active under specific conditions (such as stress or sporulation)
Small accessory subunits
Other interaction partners
- NusA: essential elongation factor
- NusG: transcription elongation factor PubMed
- GreA: resolves promoter proximal pausing of RNA polymerase PubMed
- CshA: DEAD-box RNA helicase PubMed
- PcrA: ATP-dependent DNA helicase PubMed
Temporary interaction partners
- Spx: transcription regulator, interacts with RpoA
- MgsR: transcription regulator orthologous to Spx, interacts with RpoA
- Btr: transcription activator PubMed
- YlyA: modulates SigG-dependent transcription PubMed
- Additional interaction partners of the RNA polymerase (no specific subunit specified)
Back to protein-protein interactions
References
Reviews
Juha Kurkela, Julia Fredman, Tiina A Salminen, Taina Tyystjärvi
Revealing secrets of the enigmatic omega subunit of bacterial RNA polymerase.
Mol Microbiol: 2021, 115(1);1-11
[PubMed:32920946]
[WorldCat.org]
[DOI]
(I p)
Kevin S Lang, Houra Merrikh
The Clash of Macromolecular Titans: Replication-Transcription Conflicts in Bacteria.
Annu Rev Microbiol: 2018, 72;71-88
[PubMed:29856930]
[WorldCat.org]
[DOI]
(I p)
Thomas Fouqueau, Fabian Blombach, Finn Werner
Evolutionary Origins of Two-Barrel RNA Polymerases and Site-Specific Transcription Initiation.
Annu Rev Microbiol: 2017, 71;331-348
[PubMed:28657884]
[WorldCat.org]
[DOI]
(I p)
Georgiy A Belogurov, Irina Artsimovitch
Regulation of Transcript Elongation.
Annu Rev Microbiol: 2015, 69;49-69
[PubMed:26132790]
[WorldCat.org]
[DOI]
(I p)
Nan Zhang, Martin Buck
A perspective on the enhancer dependent bacterial RNA polymerase.
Biomolecules: 2015, 5(2);1012-9
[PubMed:26010401]
[WorldCat.org]
[DOI]
(I e)
Andy Weiss, Lindsey N Shaw
Small things considered: the small accessory subunits of RNA polymerase in Gram-positive bacteria.
FEMS Microbiol Rev: 2015, 39(4);541-54
[PubMed:25878038]
[WorldCat.org]
[DOI]
(I p)
Nikolay Zenkin
Multiple personalities of the RNA polymerase active centre.
Microbiology (Reading): 2014, 160(Pt 7);1316-1320
[PubMed:24763425]
[WorldCat.org]
[DOI]
(I p)
Kimberly B Decker, Deborah M Hinton
Transcription regulation at the core: similarities among bacterial, archaeal, and eukaryotic RNA polymerases.
Annu Rev Microbiol: 2013, 67;113-39
[PubMed:23768203]
[WorldCat.org]
[DOI]
(I p)
Katelyn McGary, Evgeny Nudler
RNA polymerase and the ribosome: the close relationship.
Curr Opin Microbiol: 2013, 16(2);112-7
[PubMed:23433801]
[WorldCat.org]
[DOI]
(I p)
Lakshminarayan M Iyer, L Aravind
Insights from the architecture of the bacterial transcription apparatus.
J Struct Biol: 2012, 179(3);299-319
[PubMed:22210308]
[WorldCat.org]
[DOI]
(I p)
Finn Werner, Dina Grohmann
Evolution of multisubunit RNA polymerases in the three domains of life.
Nat Rev Microbiol: 2011, 9(2);85-98
[PubMed:21233849]
[WorldCat.org]
[DOI]
(I p)
Vladimir Svetlov, Evgeny Nudler
Macromolecular micromovements: how RNA polymerase translocates.
Curr Opin Struct Biol: 2009, 19(6);701-7
[PubMed:19889534]
[WorldCat.org]
[DOI]
(I p)
Evgeny Nudler
RNA polymerase active center: the molecular engine of transcription.
Annu Rev Biochem: 2009, 78;335-61
[PubMed:19489723]
[WorldCat.org]
[DOI]
(I p)
P J Lewis, G P Doherty, J Clarke
Transcription factor dynamics.
Microbiology (Reading): 2008, 154(Pt 7);1837-1844
[PubMed:18599813]
[WorldCat.org]
[DOI]
(P p)
Kristina M Herbert, William J Greenleaf, Steven M Block
Single-molecule studies of RNA polymerase: motoring along.
Annu Rev Biochem: 2008, 77;149-76
[PubMed:18410247]
[WorldCat.org]
[DOI]
(P p)
Sergei Borukhov, Evgeny Nudler
RNA polymerase: the vehicle of transcription.
Trends Microbiol: 2008, 16(3);126-34
[PubMed:18280161]
[WorldCat.org]
[DOI]
(P p)
Vincent Trinh, Marie-France Langelier, Jacques Archambault, Benoit Coulombe
Structural perspective on mutations affecting the function of multisubunit RNA polymerases.
Microbiol Mol Biol Rev: 2006, 70(1);12-36
[PubMed:16524917]
[WorldCat.org]
[DOI]
(P p)
W G Haldenwang
The sigma factors of Bacillus subtilis.
Microbiol Rev: 1995, 59(1);1-30
[PubMed:7708009]
[WorldCat.org]
[DOI]
(P p)
The structure of RNA polymerase
Rishi K Vishwakarma, M Zuhaib Qayyum, Paul Babitzke, Katsuhiko S Murakami
Allosteric mechanism of transcription inhibition by NusG-dependent pausing of RNA polymerase.
Proc Natl Acad Sci U S A: 2023, 120(7);e2218516120
[PubMed:36745813]
[WorldCat.org]
[DOI]
(I p)
Katsuhiko S Murakami, Yeonoh Shin, Charles L Turnbough, Vadim Molodtsov
X-ray crystal structure of a reiterative transcription complex reveals an atypical RNA extension pathway.
Proc Natl Acad Sci U S A: 2017, 114(31);8211-8216
[PubMed:28652344]
[WorldCat.org]
[DOI]
(I p)
Yun Yang, Vidya C Darbari, Nan Zhang, Duo Lu, Robert Glyde, Yi-Ping Wang, Jared T Winkelman, Richard L Gourse, Katsuhiko S Murakami, Martin Buck, Xiaodong Zhang
TRANSCRIPTION. Structures of the RNA polymerase-σ54 reveal new and conserved regulatory strategies.
Science: 2015, 349(6250);882-5
[PubMed:26293966]
[WorldCat.org]
[DOI]
(I p)
Elecia B Johnston, Peter J Lewis, Renate Griffith
The interaction of Bacillus subtilis sigmaA with RNA polymerase.
Protein Sci: 2009, 18(11);2287-97
[PubMed:19735077]
[WorldCat.org]
[DOI]
(I p)
Sergei Borukhov, Evgeny Nudler
RNA polymerase holoenzyme: structure, function and biological implications.
Curr Opin Microbiol: 2003, 6(2);93-100
[PubMed:12732296]
[WorldCat.org]
[DOI]
(P p)
Katsuhiko S Murakami, Seth A Darst
Bacterial RNA polymerases: the wholo story.
Curr Opin Struct Biol: 2003, 13(1);31-9
[PubMed:12581657]
[WorldCat.org]
[DOI]
(P p)
S A Darst
Bacterial RNA polymerase.
Curr Opin Struct Biol: 2001, 11(2);155-62
[PubMed:11297923]
[WorldCat.org]
[DOI]
(P p)
Important original publications
Bing Zhou, Yifei Xiong, Yuval Nevo, Tamar Kahan, Oren Yakovian, Sima Alon, Saurabh Bhattacharya, Ilan Rosenshine, Lior Sinai, Sigal Ben-Yehuda
Dormant bacterial spores encrypt a long-lasting transcriptional program to be executed during revival.
Mol Cell: 2023, 83(22);4158-4173.e7
[PubMed:37949068]
[WorldCat.org]
[DOI]
(I p)
Andreas U Mueller, James Chen, Mengyu Wu, Courtney Chiu, B Tracy Nixon, Elizabeth A Campbell, Seth A Darst
A general mechanism for transcription bubble nucleation in bacteria.
Proc Natl Acad Sci U S A: 2023, 120(14);e2220874120
[PubMed:36972428]
[WorldCat.org]
[DOI]
(I p)
Nelly Said, Tarek Hilal, Nicholas D Sunday, Ajay Khatri, Jörg Bürger, Thorsten Mielke, Georgiy A Belogurov, Bernhard Loll, Ranjan Sen, Irina Artsimovitch, Markus C Wahl
Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase ρ.
Science: 2021, 371(6524);
[PubMed:33243850]
[WorldCat.org]
[DOI]
(I p)
Grace E Johnson, Jean-Benoît Lalanne, Michelle L Peters, Gene-Wei Li
Functionally uncoupled transcription-translation in Bacillus subtilis.
Nature: 2020, 585(7823);124-128
[PubMed:32848247]
[WorldCat.org]
[DOI]
(I p)
Hugo B Brandão, Payel Paul, Aafke A van den Berg, David Z Rudner, Xindan Wang, Leonid A Mirny
RNA polymerases as moving barriers to condensin loop extrusion.
Proc Natl Acad Sci U S A: 2019, 116(41);20489-20499
[PubMed:31548377]
[WorldCat.org]
[DOI]
(I p)
Jin Park, Marta Dies, Yihan Lin, Sahand Hormoz, Stephanie E Smith-Unna, Sofia Quinodoz, María Jesús Hernández-Jiménez, Jordi Garcia-Ojalvo, James C W Locke, Michael B Elowitz
Molecular Time Sharing through Dynamic Pulsing in Single Cells.
Cell Syst: 2018, 6(2);216-229.e15
[PubMed:29454936]
[WorldCat.org]
[DOI]
(P p)
Jatin Narula, Abhinav Tiwari, Oleg A Igoshin
Role of Autoregulation and Relative Synthesis of Operon Partners in Alternative Sigma Factor Networks.
PLoS Comput Biol: 2016, 12(12);e1005267
[PubMed:27977677]
[WorldCat.org]
[DOI]
(I e)
Cong Ma, Xiao Yang, Peter J Lewis
Bacterial Transcription Inhibitor of RNA Polymerase Holoenzyme Formation by Structure-Based Drug Design: From in Silico Screening to Validation.
ACS Infect Dis: 2016, 2(1);39-46
[PubMed:27622946]
[WorldCat.org]
[DOI]
(I p)
Shreya Sengupta, Ranjit Kumar Prajapati, Jayanta Mukhopadhyay
Promoter Escape with Bacterial Two-component σ Factor Suggests Retention of σ Region Two in the Elongation Complex.
J Biol Chem: 2015, 290(47);28575-28583
[PubMed:26400263]
[WorldCat.org]
[DOI]
(I p)
Evan T Graves, Camille Duboc, Jun Fan, François Stransky, Mathieu Leroux-Coyau, Terence R Strick
A dynamic DNA-repair complex observed by correlative single-molecule nanomanipulation and fluorescence.
Nat Struct Mol Biol: 2015, 22(6);452-7
[PubMed:25961799]
[WorldCat.org]
[DOI]
(I p)
Matthew H Larson, Rachel A Mooney, Jason M Peters, Tricia Windgassen, Dhananjaya Nayak, Carol A Gross, Steven M Block, William J Greenleaf, Robert Landick, Jonathan S Weissman
A pause sequence enriched at translation start sites drives transcription dynamics in vivo.
Science: 2014, 344(6187);1042-7
[PubMed:24789973]
[WorldCat.org]
[DOI]
(I p)
Hsin-Yi Yeh, Hsiu-Ting Hsu, Tsung-Ching Chen, Kuei-Min Chung, Kung-Ming Liou, Ban-Yang Chang
The reduction in σ-promoter recognition flexibility as induced by core RNAP is required for σ to discern the optimal promoter spacing.
Biochem J: 2013, 455(2);185-93
[PubMed:23875654]
[WorldCat.org]
[DOI]
(I p)
Vladimir Mekler, Konstantin Severinov
Cooperativity and interaction energy threshold effects in recognition of the -10 promoter element by bacterial RNA polymerase.
Nucleic Acids Res: 2013, 41(15);7276-85
[PubMed:23771146]
[WorldCat.org]
[DOI]
(I p)
Ignacio J Cabrera-Ostertag, Amy T Cavanagh, Karen M Wassarman
Initiating nucleotide identity determines efficiency of RNA synthesis from 6S RNA templates in Bacillus subtilis but not Escherichia coli.
Nucleic Acids Res: 2013, 41(15);7501-11
[PubMed:23761441]
[WorldCat.org]
[DOI]
(I p)
Benedikt M Beckmann, Philipp G Hoch, Manja Marz, Dagmar K Willkomm, Margarita Salas, Roland K Hartmann
A pRNA-induced structural rearrangement triggers 6S-1 RNA release from RNA polymerase in Bacillus subtilis.
EMBO J: 2012, 31(7);1727-38
[PubMed:22333917]
[WorldCat.org]
[DOI]
(I p)
Olivier Delumeau, François Lecointe, Jan Muntel, Alain Guillot, Eric Guédon, Véronique Monnet, Michael Hecker, Dörte Becher, Patrice Polard, Philippe Noirot
The dynamic protein partnership of RNA polymerase in Bacillus subtilis.
Proteomics: 2011, 11(15);2992-3001
[PubMed:21710567]
[WorldCat.org]
[DOI]
(I p)
Yoko Kusuya, Ken Kurokawa, Shu Ishikawa, Naotake Ogasawara, Taku Oshima
Transcription factor GreA contributes to resolving promoter-proximal pausing of RNA polymerase in Bacillus subtilis cells.
J Bacteriol: 2011, 193(12);3090-9
[PubMed:21515770]
[WorldCat.org]
[DOI]
(I p)
Houra Merrikh, Cristina Machón, William H Grainger, Alan D Grossman, Panos Soultanas
Co-directional replication-transcription conflicts lead to replication restart.
Nature: 2011, 470(7335);554-7
[PubMed:21350489]
[WorldCat.org]
[DOI]
(I p)
Shu Ishikawa, Taku Oshima, Ken Kurokawa, Yoko Kusuya, Naotake Ogasawara
RNA polymerase trafficking in Bacillus subtilis cells.
J Bacteriol: 2010, 192(21);5778-87
[PubMed:20817769]
[WorldCat.org]
[DOI]
(I p)
Geoff P Doherty, Mark J Fogg, Anthony J Wilkinson, Peter J Lewis
Small subunits of RNA polymerase: localization, levels and implications for core enzyme composition.
Microbiology (Reading): 2010, 156(Pt 12);3532-3543
[PubMed:20724389]
[WorldCat.org]
[DOI]
(I p)