Difference between revisions of "Stusti 2018"
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
= Die Sprache der RNA: Von RNA-Schaltern zu CRISPR/ Cas = | = Die Sprache der RNA: Von RNA-Schaltern zu CRISPR/ Cas = | ||
− | == What makes RNA such a special molecule – specific chemical and structural features of RNA == | + | == What makes RNA such a special molecule – specific chemical and structural features of RNA: Niklas Kehl == |
<pubmed> 21930584</pubmed> | <pubmed> 21930584</pubmed> | ||
− | == RNA synthesis – DNA and RNA dependent RNA polymerases and primase during transcription, replication and repair == | + | == RNA synthesis – DNA and RNA dependent RNA polymerases and primase during transcription, replication and repair: Andrea Lehner == |
<pubmed> 24219496 8156586 28979293 26109351</pubmed> | <pubmed> 24219496 8156586 28979293 26109351</pubmed> | ||
− | == Ribozymes (catalytically active RNAs | + | == Ribozymes (catalytically active RNAs: Christian Thielscher) == |
− | <pubmed> 21930582</pubmed> | + | <pubmed> 21930582 22454536 14730013 10554775 21930585 6297745</pubmed> |
− | == The Ribosome - the role and function of ribosomal RNAs and the central dogma of molecular biology == | + | == The Ribosome - the role and function of ribosomal RNAs and the central dogma of molecular biology: Matthias Lenz == |
<pubmed> 18292779 21930591 25500179</pubmed> | <pubmed> 18292779 21930591 25500179</pubmed> | ||
− | == The Splicosome - the mechanism of mRNA splicing – alternative gene expression, genome size definition and phenotype plasticity == | + | == The Splicosome - the mechanism of mRNA splicing – alternative gene expression, genome size definition and phenotype plasticity: Christian Schneider == |
<pubmed> 24452469,26682498 25798239 </pubmed> | <pubmed> 24452469,26682498 25798239 </pubmed> | ||
− | + | == Riboregulation and virulence, targeting by antibiotics: Theresia Eisele == | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | == Riboregulation and virulence, targeting by antibiotics == | ||
<pubmed>27651123 26416753 | <pubmed>27651123 26416753 | ||
27120414 27672192 28434876 28529506 28886688</pubmed> | 27120414 27672192 28434876 28529506 28886688</pubmed> | ||
− | == | + | == Riboswitch modeling: Mark Sinzger == |
− | <pubmed> | + | <pubmed>19381267 28591515 27378291</pubmed> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | == The RNA world and evolution == | + | == The RNA world and evolution: Roman Doll == |
<pubmed> 25109990 25385129 25734234 25739364 26439358 17540026 29031737 28657884 19117371</pubmed> | <pubmed> 25109990 25385129 25734234 25739364 26439358 17540026 29031737 28657884 19117371</pubmed> | ||
− | == RNA modification == | + | == RNA modification: Jan Michel Göring == |
<pubmed> 26189113 26832457 27375676 | <pubmed> 26189113 26832457 27375676 | ||
28264529 28624569</pubmed> | 28264529 28624569</pubmed> | ||
− | == RNA degradation/processing == | + | == RNA degradation/processing: Lena Kricsfalussy-Hrabar == |
<pubmed> 26096689 28202538 19239894 </pubmed> | <pubmed> 26096689 28202538 19239894 </pubmed> | ||
− | == Regulation by non-coding RNA == | + | == Regulation by non-coding RNA: Maxin Drömer == |
<pubmed> 18981470 24667238 </pubmed> | <pubmed> 18981470 24667238 </pubmed> | ||
− | == RNA dependent DNA Polymerases - from telomerase to retroviruses== | + | == RNA dependent DNA Polymerases - from telomerase to retroviruses: Ansgar Stenzel== |
<pubmed> 18972389 26830230 28141967 </pubmed> | <pubmed> 18972389 26830230 28141967 </pubmed> | ||
− | + | == CRISPR/Cas: Science – the bacterial “immune” system: Maximilian Schreier == | |
− | |||
− | |||
− | == CRISPR/Cas: Science – the bacterial “immune” system == | ||
<pubmed> 29358495 29169146 28375731</pubmed> | <pubmed> 29358495 29169146 28375731</pubmed> | ||
− | == CRISPR/Cas: Application and groundbreaking perspectives == | + | == CRISPR/Cas: Application and groundbreaking perspectives: Johann Liebeton == |
<pubmed> 26771484 </pubmed> | <pubmed> 26771484 </pubmed> | ||
− | + | == Synthesis, maturation and function of tRNAs – The wobble hypothesis and specific codon usage as a molecular barrier for horizontal gene transfer: Artur Fornol == | |
− | |||
− | |||
− | == Synthesis, maturation and function of tRNAs – The wobble hypothesis and specific codon usage as a molecular barrier for horizontal gene transfer == | ||
<pubmed> 22016848 26186290 21957054 23166520 21930591</pubmed> | <pubmed> 22016848 26186290 21957054 23166520 21930591</pubmed> | ||
Line 71: | Line 54: | ||
== Outlook: RNA and SELEX – new prospects and applications for targeted interference with regulatory pathways == | == Outlook: RNA and SELEX – new prospects and applications for targeted interference with regulatory pathways == | ||
<pubmed> 17627883 19943183 </pubmed> | <pubmed> 17627883 19943183 </pubmed> | ||
+ | |||
+ | == RNA-based second messengers: Jörg Stülke == | ||
+ | <pubmed> 28420751 25616065 25682701 25869574 26280533</pubmed> | ||
+ | |||
+ | == Riboswitches: Jörg Stülke == | ||
+ | <pubmed> 27607554 26655897 28121427 29618088 25794618 25794617 25848023 24769284 25571850 25964329 25959893 24816551 25583497 26118534 26494285 28206750 28375729 28396576 28541183 28455443 29537923 27798597 29135333 29420816 28611182</pubmed> | ||
+ | |||
+ | == RNA dependent RNA Polymerases – the RNA replicase == | ||
+ | <pubmed> 29439438 18268843 9878607 </pubmed> | ||
+ | |||
+ | == The mysterious function and role of 6S-RNA and pRNA in bacteria == | ||
+ | <pubmed> 24786589 17383220 24742053 23457253</pubmed> | ||
+ | |||
+ | == RNA thermometers== | ||
+ | <pubmed>25477380 27060146 </pubmed> |
Latest revision as of 13:42, 27 July 2018
Contents
- 1 Die Sprache der RNA: Von RNA-Schaltern zu CRISPR/ Cas
- 1.1 What makes RNA such a special molecule – specific chemical and structural features of RNA: Niklas Kehl
- 1.2 RNA synthesis – DNA and RNA dependent RNA polymerases and primase during transcription, replication and repair: Andrea Lehner
- 1.3 Ribozymes (catalytically active RNAs: Christian Thielscher)
- 1.4 The Ribosome - the role and function of ribosomal RNAs and the central dogma of molecular biology: Matthias Lenz
- 1.5 The Splicosome - the mechanism of mRNA splicing – alternative gene expression, genome size definition and phenotype plasticity: Christian Schneider
- 1.6 Riboregulation and virulence, targeting by antibiotics: Theresia Eisele
- 1.7 Riboswitch modeling: Mark Sinzger
- 1.8 The RNA world and evolution: Roman Doll
- 1.9 RNA modification: Jan Michel Göring
- 1.10 RNA degradation/processing: Lena Kricsfalussy-Hrabar
- 1.11 Regulation by non-coding RNA: Maxin Drömer
- 1.12 RNA dependent DNA Polymerases - from telomerase to retroviruses: Ansgar Stenzel
- 1.13 CRISPR/Cas: Science – the bacterial “immune” system: Maximilian Schreier
- 1.14 CRISPR/Cas: Application and groundbreaking perspectives: Johann Liebeton
- 1.15 Synthesis, maturation and function of tRNAs – The wobble hypothesis and specific codon usage as a molecular barrier for horizontal gene transfer: Artur Fornol
- 1.16 Outlook: Finding function in mystery transcripts – eRNAs, long-non coding (lncRNA) and circular RNA (circRNA)
- 1.17 Outlook: RNA and SELEX – new prospects and applications for targeted interference with regulatory pathways
- 1.18 RNA-based second messengers: Jörg Stülke
- 1.19 Riboswitches: Jörg Stülke
- 1.20 RNA dependent RNA Polymerases – the RNA replicase
- 1.21 The mysterious function and role of 6S-RNA and pRNA in bacteria
- 1.22 RNA thermometers
Die Sprache der RNA: Von RNA-Schaltern zu CRISPR/ Cas
What makes RNA such a special molecule – specific chemical and structural features of RNA: Niklas Kehl
RNA synthesis – DNA and RNA dependent RNA polymerases and primase during transcription, replication and repair: Andrea Lehner
Savio T de Farias, Ariosvaldo P Dos Santos Junior, Thais G Rêgo, Marco V José
Origin and Evolution of RNA-Dependent RNA Polymerase.
Front Genet: 2017, 8;125
[PubMed:28979293]
[WorldCat.org]
[DOI]
(P e)
Thomas A Guilliam, Benjamin A Keen, Nigel C Brissett, Aidan J Doherty
Primase-polymerases are a functionally diverse superfamily of replication and repair enzymes.
Nucleic Acids Res: 2015, 43(14);6651-64
[PubMed:26109351]
[WorldCat.org]
[DOI]
(I p)
Maria L Kireeva, Mikhail Kashlev, Zachary F Burton
RNA polymerase structure, function, regulation, dynamics, fidelity, and roles in gene expression.
Chem Rev: 2013, 113(11);8325-30
[PubMed:24219496]
[WorldCat.org]
[DOI]
(I p)
S Buratowski
The basics of basal transcription by RNA polymerase II.
Cell: 1994, 77(1);1-3
[PubMed:8156586]
[WorldCat.org]
[DOI]
(P p)
Ribozymes (catalytically active RNAs: Christian Thielscher)
The Ribosome - the role and function of ribosomal RNAs and the central dogma of molecular biology: Matthias Lenz
Meredith Root-Bernstein, Robert Root-Bernstein
The ribosome as a missing link in the evolution of life.
J Theor Biol: 2015, 367;130-158
[PubMed:25500179]
[WorldCat.org]
[DOI]
(I p)
Ingo Wohlgemuth, Corinna Pohl, Joerg Mittelstaet, Andrey L Konevega, Marina V Rodnina
Evolutionary optimization of speed and accuracy of decoding on the ribosome.
Philos Trans R Soc Lond B Biol Sci: 2011, 366(1580);2979-86
[PubMed:21930591]
[WorldCat.org]
[DOI]
(I p)
Thomas A Steitz
A structural understanding of the dynamic ribosome machine.
Nat Rev Mol Cell Biol: 2008, 9(3);242-53
[PubMed:18292779]
[WorldCat.org]
[DOI]
(I p)
The Splicosome - the mechanism of mRNA splicing – alternative gene expression, genome size definition and phenotype plasticity: Christian Schneider
Panagiotis Papasaikas, Juan Valcárcel
The Spliceosome: The Ultimate RNA Chaperone and Sculptor.
Trends Biochem Sci: 2016, 41(1);33-45
[PubMed:26682498]
[WorldCat.org]
[DOI]
(I p)
Yan Wang, Jing Liu, B O Huang, Yan-Mei Xu, Jing Li, Lin-Feng Huang, Jin Lin, Jing Zhang, Qing-Hua Min, Wei-Ming Yang, Xiao-Zhong Wang
Mechanism of alternative splicing and its regulation.
Biomed Rep: 2015, 3(2);152-158
[PubMed:25798239]
[WorldCat.org]
[DOI]
(P p)
A Gregory Matera, Zefeng Wang
A day in the life of the spliceosome.
Nat Rev Mol Cell Biol: 2014, 15(2);108-21
[PubMed:24452469]
[WorldCat.org]
[DOI]
(I p)
Riboregulation and virulence, targeting by antibiotics: Theresia Eisele
Juan J Quereda, Pascale Cossart
Regulating Bacterial Virulence with RNA.
Annu Rev Microbiol: 2017, 71;263-280
[PubMed:28886688]
[WorldCat.org]
[DOI]
(I p)
Petra Dersch, Muna A Khan, Sabrina Mühlen, Boris Görke
Roles of Regulatory RNAs for Antibiotic Resistance in Bacteria and Their Potential Value as Novel Drug Targets.
Front Microbiol: 2017, 8;803
[PubMed:28529506]
[WorldCat.org]
[DOI]
(P e)
Hao Wang, Paul A Mann, Li Xiao, Charles Gill, Andrew M Galgoci, John A Howe, Artjohn Villafania, Christopher M Barbieri, Juliana C Malinverni, Xinwei Sher, Todd Mayhood, Megan D McCurry, Nicholas Murgolo, Amy Flattery, Matthias Mack, Terry Roemer
Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting.
Cell Chem Biol: 2017, 24(5);576-588.e6
[PubMed:28434876]
[WorldCat.org]
[DOI]
(I p)
Andreas Matern, Danielle Pedrolli, Stephanie Großhennig, Jörgen Johansson, Matthias Mack
Uptake and Metabolism of Antibiotics Roseoflavin and 8-Demethyl-8-Aminoriboflavin in Riboflavin-Auxotrophic Listeria monocytogenes.
J Bacteriol: 2016, 198(23);3233-3243
[PubMed:27672192]
[WorldCat.org]
[DOI]
(I e)
Aaron M Nuss, Ann Kathrin Heroven, Petra Dersch
RNA Regulators: Formidable Modulators of Yersinia Virulence.
Trends Microbiol: 2017, 25(1);19-34
[PubMed:27651123]
[WorldCat.org]
[DOI]
(I p)
Daniel Dar, Maya Shamir, J R Mellin, Mikael Koutero, Noam Stern-Ginossar, Pascale Cossart, Rotem Sorek
Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria.
Science: 2016, 352(6282);aad9822
[PubMed:27120414]
[WorldCat.org]
[DOI]
(I p)
John A Howe, Hao Wang, Thierry O Fischmann, Carl J Balibar, Li Xiao, Andrew M Galgoci, Juliana C Malinverni, Todd Mayhood, Artjohn Villafania, Ali Nahvi, Nicholas Murgolo, Christopher M Barbieri, Paul A Mann, Donna Carr, Ellen Xia, Paul Zuck, Dan Riley, Ronald E Painter, Scott S Walker, Brad Sherborne, Reynalda de Jesus, Weidong Pan, Michael A Plotkin, Jin Wu, Diane Rindgen, John Cummings, Charles G Garlisi, Rumin Zhang, Payal R Sheth, Charles J Gill, Haifeng Tang, Terry Roemer
Selective small-molecule inhibition of an RNA structural element.
Nature: 2015, 526(7575);672-7
[PubMed:26416753]
[WorldCat.org]
[DOI]
(I p)
Riboswitch modeling: Mark Sinzger
Christopher Schneider, Leo Bronstein, Jascha Diemer, Heinz Koeppl, Beatrix Suess
ROC'n'Ribo: Characterizing a Riboswitching Expression System by Modeling Single-Cell Data.
ACS Synth Biol: 2017, 6(7);1211-1224
[PubMed:28591515]
[WorldCat.org]
[DOI]
(I p)
Marco Barsacchi, Eva Maria Novoa, Manolis Kellis, Alessio Bechini
SwiSpot: modeling riboswitches by spotting out switching sequences.
Bioinformatics: 2016, 32(21);3252-3259
[PubMed:27378291]
[WorldCat.org]
[DOI]
(I p)
Chase L Beisel, Christina D Smolke
Design principles for riboswitch function.
PLoS Comput Biol: 2009, 5(4);e1000363
[PubMed:19381267]
[WorldCat.org]
[DOI]
(I p)
The RNA world and evolution: Roman Doll
Ádám Kun, Ádám Radványi
The evolution of the genetic code: Impasses and challenges.
Biosystems: 2018, 164;217-225
[PubMed:29031737]
[WorldCat.org]
[DOI]
(I p)
Thomas Fouqueau, Fabian Blombach, Finn Werner
Evolutionary Origins of Two-Barrel RNA Polymerases and Site-Specific Transcription Initiation.
Annu Rev Microbiol: 2017, 71;331-348
[PubMed:28657884]
[WorldCat.org]
[DOI]
(I p)
Abe Pressman, Celia Blanco, Irene A Chen
The RNA World as a Model System to Study the Origin of Life.
Curr Biol: 2015, 25(19);R953-63
[PubMed:26439358]
[WorldCat.org]
[DOI]
(I p)
Jessica C Bowman, Nicholas V Hud, Loren Dean Williams
The ribosome challenge to the RNA world.
J Mol Evol: 2015, 80(3-4);143-61
[PubMed:25739364]
[WorldCat.org]
[DOI]
(I p)
Daniel Lundin, Gustav Berggren, Derek T Logan, Britt-Marie Sjöberg
The origin and evolution of ribonucleotide reduction.
Life (Basel): 2015, 5(1);604-36
[PubMed:25734234]
[WorldCat.org]
[DOI]
(P e)
Paul G Higgs, Niles Lehman
The RNA World: molecular cooperation at the origins of life.
Nat Rev Genet: 2015, 16(1);7-17
[PubMed:25385129]
[WorldCat.org]
[DOI]
(I p)
Markus Ralser
The RNA world and the origin of metabolic enzymes.
Biochem Soc Trans: 2014, 42(4);985-8
[PubMed:25109990]
[WorldCat.org]
[DOI]
(I p)
Eugene V Koonin, Artem S Novozhilov
Origin and evolution of the genetic code: the universal enigma.
IUBMB Life: 2009, 61(2);99-111
[PubMed:19117371]
[WorldCat.org]
[DOI]
(I p)
Yuri I Wolf, Eugene V Koonin
On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization.
Biol Direct: 2007, 2;14
[PubMed:17540026]
[WorldCat.org]
[DOI]
(I e)
RNA modification: Jan Michel Göring
Baixing Wu, Li Li, Ying Huang, Jinbiao Ma, Jinrong Min
##Title##
Curr Opin Struct Biol: 2017, 47;67-76
[PubMed:28624569]
[WorldCat.org]
[DOI]
(I p)
Hiroyuki Hori
Transfer RNA methyltransferases with a SpoU-TrmD (SPOUT) fold and their modified nucleosides in tRNA.
Biomolecules: 2017, 7(1);
[PubMed:28264529]
[WorldCat.org]
[DOI]
(I e)
Ajay K Rana, Serge Ankri
Reviving the RNA World: An Insight into the Appearance of RNA Methyltransferases.
Front Genet: 2016, 7;99
[PubMed:27375676]
[WorldCat.org]
[DOI]
(P e)
Marcus Fislage, Lina Wauters, Wim Versées
Invited review: MnmE, a GTPase that drives a complex tRNA modification reaction.
Biopolymers: 2016, 105(8);568-79
[PubMed:26832457]
[WorldCat.org]
[DOI]
(I p)
Clément Dégut, Luc Ponchon, Marcia Folly-Klan, Pierre Barraud, Carine Tisné
The m1A(58) modification in eubacterial tRNA: An overview of tRNA recognition and mechanism of catalysis by TrmI.
Biophys Chem: 2016, 210;27-34
[PubMed:26189113]
[WorldCat.org]
[DOI]
(I p)
RNA degradation/processing: Lena Kricsfalussy-Hrabar
Regulation by non-coding RNA: Maxin Drömer
Yvonne Göpel, Muna A Khan, Boris Görke
Ménage à trois: post-transcriptional control of the key enzyme for cell envelope synthesis by a base-pairing small RNA, an RNase adaptor protein, and a small RNA mimic.
RNA Biol: 2014, 11(5);433-42
[PubMed:24667238]
[WorldCat.org]
[DOI]
(I p)
Boris Görke, Jörg Vogel
Noncoding RNA control of the making and breaking of sugars.
Genes Dev: 2008, 22(21);2914-25
[PubMed:18981470]
[WorldCat.org]
[DOI]
(P p)
RNA dependent DNA Polymerases - from telomerase to retroviruses: Ansgar Stenzel
R Alex Wu, Heather E Upton, Jacob M Vogan, Kathleen Collins
Telomerase Mechanism of Telomere Synthesis.
Annu Rev Biochem: 2017, 86;439-460
[PubMed:28141967]
[WorldCat.org]
[DOI]
(I p)
Yoshiko Maida, Mami Yasukawa, Kenkichi Masutomi
De Novo RNA Synthesis by RNA-Dependent RNA Polymerase Activity of Telomerase Reverse Transcriptase.
Mol Cell Biol: 2016, 36(8);1248-59
[PubMed:26830230]
[WorldCat.org]
[DOI]
(I e)
George Tzertzinis, Stanley Tabor, Nicole M Nichols
RNA-dependent DNA polymerases.
Curr Protoc Mol Biol: 2008, Chapter 3;Unit3.7
[PubMed:18972389]
[WorldCat.org]
[DOI]
(I p)
CRISPR/Cas: Science – the bacterial “immune” system: Maximilian Schreier
Yoshizumi Ishino, Mart Krupovic, Patrick Forterre
History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology.
J Bacteriol: 2018, 200(7);
[PubMed:29358495]
[WorldCat.org]
[DOI]
(I e)
Lina M Leon, Senén D Mendoza, Joseph Bondy-Denomy
How bacteria control the CRISPR-Cas arsenal.
Curr Opin Microbiol: 2018, 42;87-95
[PubMed:29169146]
[WorldCat.org]
[DOI]
(I p)
Fuguo Jiang, Jennifer A Doudna
CRISPR-Cas9 Structures and Mechanisms.
Annu Rev Biophys: 2017, 46;505-529
[PubMed:28375731]
[WorldCat.org]
[DOI]
(I p)
CRISPR/Cas: Application and groundbreaking perspectives: Johann Liebeton
Addison V Wright, James K Nuñez, Jennifer A Doudna
Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering.
Cell: 2016, 164(1-2);29-44
[PubMed:26771484]
[WorldCat.org]
[DOI]
(I p)
Synthesis, maturation and function of tRNAs – The wobble hypothesis and specific codon usage as a molecular barrier for horizontal gene transfer: Artur Fornol
Outlook: Finding function in mystery transcripts – eRNAs, long-non coding (lncRNA) and circular RNA (circRNA)
Outlook: RNA and SELEX – new prospects and applications for targeted interference with regulatory pathways
Sujin Jeong, Seung Ryul Han, Young Ju Lee, Seong-Wook Lee
Selection of RNA aptamers specific to active prostate-specific antigen.
Biotechnol Lett: 2010, 32(3);379-85
[PubMed:19943183]
[WorldCat.org]
[DOI]
(I p)
Regina Stoltenburg, Christine Reinemann, Beate Strehlitz
SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands.
Biomol Eng: 2007, 24(4);381-403
[PubMed:17627883]
[WorldCat.org]
[DOI]
(P p)
RNA-based second messengers: Jörg Stülke
Jan Gundlach, Christina Herzberg, Volkhard Kaever, Katrin Gunka, Tamara Hoffmann, Martin Weiß, Johannes Gibhardt, Andrea Thürmer, Dietrich Hertel, Rolf Daniel, Erhard Bremer, Fabian M Commichau, Jörg Stülke
##Title##
Sci Signal: 2017, 10(475);
[PubMed:28420751]
[WorldCat.org]
[DOI]
(I e)
Christopher P Jones, Adrian R Ferré-D'Amaré
Recognition of the bacterial alarmone ZMP through long-distance association of two RNA subdomains.
Nat Struct Mol Biol: 2015, 22(9);679-85
[PubMed:26280533]
[WorldCat.org]
[DOI]
(I p)
Fabian M Commichau, Achim Dickmanns, Jan Gundlach, Ralf Ficner, Jörg Stülke
A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP.
Mol Microbiol: 2015, 97(2);189-204
[PubMed:25869574]
[WorldCat.org]
[DOI]
(I p)
Renée J St-Onge, Henry J Haiser, Mary R Yousef, Emma Sherwood, Natalia Tschowri, Mahmoud Al-Bassam, Marie A Elliot
Nucleotide second messenger-mediated regulation of a muralytic enzyme in Streptomyces.
Mol Microbiol: 2015, 96(4);779-95
[PubMed:25682701]
[WorldCat.org]
[DOI]
(I p)
Gregory S Ducker, Joshua D Rabinowitz
ZMP: a master regulator of one-carbon metabolism.
Mol Cell: 2015, 57(2);203-4
[PubMed:25616065]
[WorldCat.org]
[DOI]
(I p)
Riboswitches: Jörg Stülke
Stefan Schwenk, Alexandra Moores, Irene Nobeli, Timothy D McHugh, Kristine B Arnvig
Cell-wall synthesis and ribosome maturation are co-regulated by an RNA switch in Mycobacterium tuberculosis.
Nucleic Acids Res: 2018, 46(11);5837-5849
[PubMed:29618088]
[WorldCat.org]
[DOI]
(I p)
Laurène Bastet, Pierre Turcotte, Joseph T Wade, Daniel A Lafontaine
Maestro of regulation: Riboswitches orchestrate gene expression at the levels of translation, transcription and mRNA decay.
RNA Biol: 2018, 15(6);679-682
[PubMed:29537923]
[WorldCat.org]
[DOI]
(I p)
Marc Vogel, Julia E Weigand, Britta Kluge, Manuel Grez, Beatrix Suess
A small, portable RNA device for the control of exon skipping in mammalian cells.
Nucleic Acids Res: 2018, 46(8);e48
[PubMed:29420816]
[WorldCat.org]
[DOI]
(I p)
Etienne B Greenlee, Shira Stav, Ruben M Atilho, Kenneth I Brewer, Kimberly A Harris, Sarah N Malkowski, Gayan Mirihana Arachchilage, Kevin R Perkins, Madeline E Sherlock, Ronald R Breaker
Challenges of ligand identification for the second wave of orphan riboswitch candidates.
RNA Biol: 2018, 15(3);377-390
[PubMed:29135333]
[WorldCat.org]
[DOI]
(I p)
James W Nelson, Ronald R Breaker
The lost language of the RNA World.
Sci Signal: 2017, 10(483);
[PubMed:28611182]
[WorldCat.org]
[DOI]
(I e)
Hannah Steinert, Florian Sochor, Anna Wacker, Janina Buck, Christina Helmling, Fabian Hiller, Sara Keyhani, Jonas Noeske, Steffen Grimm, Martin M Rudolph, Heiko Keller, Rachel Anne Mooney, Robert Landick, Beatrix Suess, Boris Fürtig, Jens Wöhnert, Harald Schwalbe
Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation.
Elife: 2017, 6;
[PubMed:28541183]
[WorldCat.org]
[DOI]
(I e)
Joseph E Wedekind, Debapratim Dutta, Ivan A Belashov, Jermaine L Jenkins
Metalloriboswitches: RNA-based inorganic ion sensors that regulate genes.
J Biol Chem: 2017, 292(23);9441-9450
[PubMed:28455443]
[WorldCat.org]
[DOI]
(I p)
Phillip J McCown, Keith A Corbino, Shira Stav, Madeline E Sherlock, Ronald R Breaker
Riboswitch diversity and distribution.
RNA: 2017, 23(7);995-1011
[PubMed:28396576]
[WorldCat.org]
[DOI]
(I p)
Christopher P Jones, Adrian R Ferré-D'Amaré
Long-Range Interactions in Riboswitch Control of Gene Expression.
Annu Rev Biophys: 2017, 46;455-481
[PubMed:28375729]
[WorldCat.org]
[DOI]
(I p)
Maja Etzel, Mario Mörl
Synthetic Riboswitches: From Plug and Pray toward Plug and Play.
Biochemistry: 2017, 56(9);1181-1198
[PubMed:28206750]
[WorldCat.org]
[DOI]
(I p)
Svetlana V Harbaugh, Michael S Goodson, Kateri Dillon, Sarah Zabarnick, Nancy Kelley-Loughnane
Riboswitch-Based Reversible Dual Color Sensor.
ACS Synth Biol: 2017, 6(5);766-781
[PubMed:28121427]
[WorldCat.org]
[DOI]
(I p)
Kyle E Watters, Eric J Strobel, Angela M Yu, John T Lis, Julius B Lucks
Cotranscriptional folding of a riboswitch at nucleotide resolution.
Nat Struct Mol Biol: 2016, 23(12);1124-1131
[PubMed:27798597]
[WorldCat.org]
[DOI]
(I p)
Anna V Sherwood, Tina M Henkin
Riboswitch-Mediated Gene Regulation: Novel RNA Architectures Dictate Gene Expression Responses.
Annu Rev Microbiol: 2016, 70;361-74
[PubMed:27607554]
[WorldCat.org]
[DOI]
(I p)
Aiming Ren, Yi Xue, Alla Peselis, Alexander Serganov, Hashim M Al-Hashimi, Dinshaw J Patel
Structural and Dynamic Basis for Low-Affinity, High-Selectivity Binding of L-Glutamine by the Glutamine Riboswitch.
Cell Rep: 2015, 13(9);1800-13
[PubMed:26655897]
[WorldCat.org]
[DOI]
(I p)
Danielle Biscaro Pedrolli, Christian Kühm, Daniel C Sévin, Michael P Vockenhuber, Uwe Sauer, Beatrix Suess, Matthias Mack
A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis.
Proc Natl Acad Sci U S A: 2015, 112(45);14054-9
[PubMed:26494285]
[WorldCat.org]
[DOI]
(I p)
Aiming Ren, Kanagalaghatta R Rajashankar, Dinshaw J Patel
Global RNA Fold and Molecular Recognition for a pfl Riboswitch Bound to ZMP, a Master Regulator of One-Carbon Metabolism.
Structure: 2015, 23(8);1375-1381
[PubMed:26118534]
[WorldCat.org]
[DOI]
(I p)
Mingxu You, Jacob L Litke, Samie R Jaffrey
Imaging metabolite dynamics in living cells using a Spinach-based riboswitch.
Proc Natl Acad Sci U S A: 2015, 112(21);E2756-65
[PubMed:25964329]
[WorldCat.org]
[DOI]
(I p)
Jinwei Zhang, Adrian R Ferré-D'Amaré
Structure and mechanism of the T-box riboswitches.
Wiley Interdiscip Rev RNA: 2015, 6(4);419-33
[PubMed:25959893]
[WorldCat.org]
[DOI]
(I p)
James W Nelson, Narasimhan Sudarsan, Grace E Phillips, Shira Stav, Christina E Lünse, Phillip J McCown, Ronald R Breaker
Control of bacterial exoelectrogenesis by c-AMP-GMP.
Proc Natl Acad Sci U S A: 2015, 112(17);5389-94
[PubMed:25848023]
[WorldCat.org]
[DOI]
(I p)
Michael Dambach, Melissa Sandoval, Taylor B Updegrove, Vivek Anantharaman, L Aravind, Lauren S Waters, Gisela Storz
The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element.
Mol Cell: 2015, 57(6);1099-1109
[PubMed:25794618]
[WorldCat.org]
[DOI]
(I p)
Kazuhiro Furukawa, Arati Ramesh, Zhiyuan Zhou, Zasha Weinberg, Tenaya Vallery, Wade C Winkler, Ronald R Breaker
Bacterial riboswitches cooperatively bind Ni(2+) or Co(2+) ions and control expression of heavy metal transporters.
Mol Cell: 2015, 57(6);1088-1098
[PubMed:25794617]
[WorldCat.org]
[DOI]
(I p)
Anna V Sherwood, Frank J Grundy, Tina M Henkin
T box riboswitches in Actinobacteria: translational regulation via novel tRNA interactions.
Proc Natl Acad Sci U S A: 2015, 112(4);1113-8
[PubMed:25583497]
[WorldCat.org]
[DOI]
(I p)
José A L da Silva
From the RNA world to the RNA/protein world: contribution of some riboswitch-binding species?
J Theor Biol: 2015, 370;197-201
[PubMed:25571850]
[WorldCat.org]
[DOI]
(I p)
Tina M Henkin
The T box riboswitch: A novel regulatory RNA that utilizes tRNA as its ligand.
Biochim Biophys Acta: 2014, 1839(10);959-963
[PubMed:24816551]
[WorldCat.org]
[DOI]
(P p)
Arati Ramesh, Wade C Winkler
Metabolite-binding ribozymes.
Biochim Biophys Acta: 2014, 1839(10);989-994
[PubMed:24769284]
[WorldCat.org]
[DOI]
(P p)
RNA dependent RNA Polymerases – the RNA replicase
Sangita Venkataraman, Burra V L S Prasad, Ramasamy Selvarajan
RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution.
Viruses: 2018, 10(2);
[PubMed:29439438]
[WorldCat.org]
[DOI]
(I e)
Kenneth K S Ng, Jamie J Arnold, Craig E Cameron
Structure-function relationships among RNA-dependent RNA polymerases.
Curr Top Microbiol Immunol: 2008, 320;137-56
[PubMed:18268843]
[WorldCat.org]
[DOI]
(P p)
E K O'Reilly, C C Kao
Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure.
Virology: 1998, 252(2);287-303
[PubMed:9878607]
[WorldCat.org]
[DOI]
(P p)
The mysterious function and role of 6S-RNA and pRNA in bacteria
Benedikt Steuten, Philipp G Hoch, Katrin Damm, Sabine Schneider, Karen Köhler, Rolf Wagner, Roland K Hartmann
Regulation of transcription by 6S RNAs: insights from the Escherichia coli and Bacillus subtilis model systems.
RNA Biol: 2014, 11(5);508-21
[PubMed:24786589]
[WorldCat.org]
[DOI]
(I p)
Amy T Cavanagh, Karen M Wassarman
6S RNA, a global regulator of transcription in Escherichia coli, Bacillus subtilis, and beyond.
Annu Rev Microbiol: 2014, 68;45-60
[PubMed:24742053]
[WorldCat.org]
[DOI]
(I p)
Amy T Cavanagh, Karen M Wassarman
6S-1 RNA function leads to a delay in sporulation in Bacillus subtilis.
J Bacteriol: 2013, 195(9);2079-86
[PubMed:23457253]
[WorldCat.org]
[DOI]
(I p)
Karen M Wassarman
6S RNA: a small RNA regulator of transcription.
Curr Opin Microbiol: 2007, 10(2);164-8
[PubMed:17383220]
[WorldCat.org]
[DOI]
(P p)
RNA thermometers
Johanna Roßmanith, Franz Narberhaus
Exploring the modular nature of riboswitches and RNA thermometers.
Nucleic Acids Res: 2016, 44(11);5410-23
[PubMed:27060146]
[WorldCat.org]
[DOI]
(I p)
Satya Narayan, Mamta H Kombrabail, Sudipta Das, Himanshu Singh, Kandala V R Chary, Basuthkar J Rao, Guruswamy Krishnamoorthy
Site-specific fluorescence dynamics in an RNA 'thermometer' reveals the role of ribosome binding in its temperature-sensitive switch function.
Nucleic Acids Res: 2015, 43(1);493-503
[PubMed:25477380]
[WorldCat.org]
[DOI]
(I p)