ktrA
168
high affinity potassium channel KtrA-KtrB, peripheric membrane component
Locus
BSU_31090
Molecular weight
24.73 kDa
Isoelectric point
5.98
Function
potassium uptake
Essential
no
Synonyms
ktrA, yuaA
Outlinks
Genomic Context
Categories containing this gene/protein
List of homologs in different organisms, belongs to COG0569 (Galperin et al., 2021)
This gene is a member of the following regulons
Gene
Coordinates
3,188,414 3,189,082
Phenotypes of a mutant
The protein
Catalyzed reaction/ biological activity
high-affinity uptake of K+ (in complex with KtrB)
Protein family
KtrA potassium transport family (with KtrC, according to UniProt)
contains a RCK_N domain at the N-terminus (aa 8-130) (according to UniProt)
contains a RCK_C domain at the C-terminus (aa 139-222) (according to UniProt)
Structure
1LSU (PDB) (complex with NADH)
2HMW ( complex with ATP)
Effectors of protein activity
Kinetic information
Paralogous protein(s)
peripheral membrane protein PubMed
Expression and Regulation
Operons
Description
Regulatory mechanism
c-di-AMP Riboswitch: RNA switch, expression is switched off upon binding of c-di-AMP, in c-di-AMP Riboswitch
Additional information
Biological materials
Mutant
GP4143 (ktrA::lox72 trpC2), available in Jörg Stülke's lab
GP4145 (ktrA::neo trpC2), available in Jörg Stülke's lab
MGNA-B543 (yuaA::erm), available at the NBRP B. subtilis, Japan
BKE31090 (ktrA::erm trpC2) available at BGSC, PubMed, upstream reverse: _UP1_CAATGTTCATATCTCCCTTA, downstream forward: _UP4_GAAAACGAAGGGATGTAGAC
Expression vectors
pGP2594: (IPTG inducible expression, purification in E. coli with N-terminal His-tag, in pWH844), available in Jörg Stülke's lab
pGP3713: expression of ktrA (gapA RBS) by pBQ200 in B. subtilis, available in Jörg Stülke's lab
LacZ fusion
GP2176 (based on pAC5), available in Jörg Stülke's lab
GP2177 (based on pAC7), available in Jörg Stülke's lab
Labs working on this gene/protein
Erhard Bremer, University of Marburg, Germany Homepage
Inga Hänelt, Frankfurt, Germany Homepage
João H Morais-Cabral, University of Porto, Portugal Homepage
Jörg Stülke, University of Göttingen, Germany Homepage
References
Reviews
Molecular mechanisms for bacterial potassium homeostasis.Journal of molecular biology. 2021 Mar 30; :166968. PMID: 33798529
Unappreciated Roles for K+ Channels in Bacterial Physiology.Trends in microbiology. 2021 Oct; 29(10):942-950. PMID: 33288383
Cyclic di-AMP Signaling in Bacteria.Annual review of microbiology. 2020 Sep 8; 74:159-179. PMID: 32603625
Cyclic di-AMP, a second messenger of primary importance: tertiary structures and binding mechanisms.
Nucleic acids research. 2020 Apr 06; 48(6):2807-2829. doi:10.1093/nar/gkaa112. PMID:32095817
How RCK domains regulate gating of K+ channels.
Biological chemistry. 2019 Jul 27; . doi:10.1515/hsz-2019-0153. pii:/j/bchm.ahead-of-print/hsz-2019-0153/hsz-2019-0153.xml. PMID:31361596
Perspective of ions and messengers: an intricate link between potassium, glutamate, and cyclic di-AMP.
Current genetics. 2017 Aug 20; . doi:10.1007/s00294-017-0734-3. PMID:28825218
Staying in Touch while on the Go.
Cell. 2017 Jan 12; 168(1-2):15-17. pii:S0092-8674(16)31740-8. doi:10.1016/j.cell.2016.12.024. PMID:28086088
Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis.
Biological chemistry. 2017 Feb 01; 398(2):193-214. doi:10.1515/hsz-2016-0265. pii:/j/bchm.2017.398.issue-2/hsz-2016-0265/hsz-2016-0265.xml. PMID:27935846
A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP.
Molecular microbiology. 2015 Jul; 97(2):189-204. doi:10.1111/mmi.13026. PMID:25869574
Functional diversity of the superfamily of K⁺ transporters to meet various requirements.
Biological chemistry. 2015 Sep; 396(9-10):1003-14. doi:10.1515/hsz-2015-0123. pii:/j/bchm.2015.396.issue-9-10/hsz-2015-0123/hsz-2015-0123.xml. PMID:25838295
Original Publications
Structural basis and synergism of ATP and Na(+) activation in bacterial K(+) uptake system KtrAB.Nature communications. 2024 May 8; 15(1):3850. PMID: 38719864
c-di-AMP determines the hierarchical organization of bacterial RCK proteins.Proceedings of the National Academy of Sciences of the United States of America. 2024 Apr 30; 121(18):e2318666121. PMID: 38652747
A Central Role for Magnesium Homeostasis during Adaptation to Osmotic Stress.mBio. 2022 Feb 15; :e0009222. PMID: 35164567
Fluorometric Liposome Screen for Inhibitors of a Physiologically Important Bacterial Ion Channel.Frontiers in microbiology. 2021; 12:603700. PMID: 33732218
Two ways to convert a low- to a high-affinity potassium channel: Control of KtrCD by glutamate.
Journal of bacteriology. 2020 Apr 06; . pii:JB.00138-20. doi:10.1128/JB.00138-20. PMID:32253343
Activation of a nucleotide-dependent RCK domain requires binding of a cation cofactor to a conserved site.
eLife. 2019 Dec 23; 8. doi:10.7554/eLife.50661. pii:e50661. PMID:31868587
Sustained sensing in potassium homeostasis: Cyclic di-AMP controls potassium uptake by KimA at the levels of expression and activity.
The Journal of biological chemistry. 2019 May 06; . pii:jbc.RA119.008774. doi:10.1074/jbc.RA119.008774. PMID:31061098
Characterization of the molecular properties of KtrC, a second RCK domain that regulates a Ktr channel in Bacillus subtilis.
Journal of structural biology. 2019 Feb 09; . pii:S1047-8477(19)30025-5. doi:10.1016/j.jsb.2019.02.002. PMID:30753894
Adaptation of Bacillus subtilis to Life at Extreme Potassium Limitation.
mBio. 2017 Jul 05; 8(4). pii:e00861-17. doi:10.1128/mBio.00861-17. PMID:28679749
Helical jackknives control the gates of the double-pore K(+) uptake system KtrAB.
eLife. 2017 May 16; 6. doi:10.7554/eLife.24303. pii:e24303. PMID:28504641
Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis.
Science signaling. 2017 Apr 18; 10(475). pii:eaal3011. doi:10.1126/scisignal.aal3011. PMID:28420751
Species-Independent Attraction to Biofilms through Electrical Signaling.
Cell. 2017 Jan 12; 168(1-2):200-209.e12. pii:S0092-8674(16)31728-7. doi:10.1016/j.cell.2016.12.014. PMID:28086091
Dissecting the Molecular Mechanism of Nucleotide-Dependent Activation of the KtrAB K+ Transporter.
PLoS biology. 2016 Jan; 14(1):e1002356. doi:10.1371/journal.pbio.1002356. PMID:26771197
Structural Studies of Potassium Transport Protein KtrA Regulator of Conductance of K+ (RCK) C Domain in Complex with Cyclic Diadenosine Monophosphate (c-di-AMP).
The Journal of biological chemistry. 2015 Jun 26; 290(26):16393-402. doi:10.1074/jbc.M115.641340. PMID:25957408
Riboswitches in eubacteria sense the second messenger c-di-AMP.
Nature chemical biology. 2013 Dec; 9(12):834-9. doi:10.1038/nchembio.1363. PMID:24141192
The structure of the KtrAB potassium transporter.
Nature. 2013 Apr 18; 496(7445):323-8. doi:10.1038/nature12055. PMID:23598340
The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis.
Nature chemical biology. 2012 Dec; 8(12):963-5. doi:10.1038/nchembio.1095. PMID:23086297
Evidence for widespread gene control function by the ydaO riboswitch candidate.
Journal of bacteriology. 2010 Aug; 192(15):3983-9. doi:10.1128/JB.00450-10. PMID:20511502
The RCK domain of the KtrAB K+ transporter: multiple conformations of an octameric ring.
Cell. 2006 Sep 22; 126(6):1147-59. . PMID:16990138
Genetic requirements for potassium ion-dependent colony spreading in Bacillus subtilis.
Journal of bacteriology. 2005 Dec; 187(24):8462-9. . PMID:16321950
New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control.
Proceedings of the National Academy of Sciences of the United States of America. 2004 Apr 27; 101(17):6421-6. . PMID:15096624
KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity.
Journal of bacteriology. 2003 Feb; 185(4):1289-98. . PMID:12562800
Page visits: 7222
Time of last update: 2025-04-04 17:27:28
Author of last update: Jstuelk