pnpA
168
polynucleotide phosphorylase, RNase, contributes to efficient 3' exonucleolytic mRNA decay (together with CshA), involved in double-strand break repair
Locus
BSU_16690
Molecular weight
77.28 kDa
Isoelectric point
4.89
Function
DNA repair, competence development, RNA degradation
Product
polynucleotide phosphorylase (PNPase)
Essential
no
E.C.
2.7.7.8
Synonyms
pnpA, comR, pnp
Outlinks
Genomic Context
Categories containing this gene/protein
List of homologs in different organisms, belongs to COG1185 (Galperin et al., 2021)
This gene is a member of the following regulons
Gene
Coordinates
1,739,383 1,741,500
Phenotypes of a mutant
The pnpA mutant is cold sensitive and sensitive to tetracyclin, it shows multiseptate filamentous growth PubMed
The mutant is deficient in genetic competence (no expression of the late competence genes) PubMed
The pnpA mutant exhibits reduced motility and reduced expression of the fla-che operon resulting from accumulation of slrA mRNA PubMed
The protein
Catalyzed reaction/ biological activity
3'-5' exoribonuclease, RNase
PNPase degrades the trp mRNA from RNA-TRAP complex
involved in double-strand break (DSB) repair via homologous recombination (HR) or non-homologous end-joining (NHEJ) PubMed
phosphate + RNA(n+1) --> ribonucleoside 5'-diphosphate + RNA(n) (according to UniProt)
Protein family
polyribonucleotide nucleotidyltransferase family (single member, according to UniProt)
Structure
5YJJ (PDB) (protein from Staphylococcus aureus) PubMed
3GCM (PDB) (protein from E. coli, PNPase/RNase E micro-domain/RNA tetragonal crystal form )
cytoplasm (homogeneous) PubMed
Additional information
Expression and Regulation
Operons
Genes
Description
Regulation
Regulatory mechanism
stringent response: negative regulation, in stringent response
Biological materials
Mutant
Expression vectors
for expression, purification in E. coli with N-terminal His-tag, in pWH844: pGP838, available in Jrg Stlke's lab
for expression/ purification from B. subtilis with N-terminal Strep-tag, for SPINE, in pGP380: pGP1342, available in Jrg Stlke's lab
for chromosomal expression of PnpA-Strep (cat): GP1002, available in Jrg Stlke's lab
for chromosomal expression of PnpA-Strep (spc): GP1038, available in Jrg Stlke's lab
Two-hybrid system
FLAG-tag construct
GFP fusion
Labs working on this gene/protein
David Bechhofer, Mount Sinai School, New York, USA Laboratories and Programs/Bechhofer Laboratory?citype=Physician&ciid=Bechhofer David H 1255565 Homepage
References
Reviews
Bacterial ribonucleases and their roles in RNA metabolism.
Critical reviews in biochemistry and molecular biology. 2019 Jun; 54(3):242-300. doi:10.1080/10409238.2019.1651816. PMID:31464530
Major 3'-5' Exoribonucleases in the Metabolism of Coding and Non-coding RNA.
Progress in molecular biology and translational science. 2018; 159:101-155. pii:S1877-1173(18)30098-X. doi:10.1016/bs.pmbts.2018.07.005. PMID:30340785
RNases and Helicases in Gram-Positive Bacteria.
Microbiology spectrum. 2018 Apr; 6(2). doi:10.1128/microbiolspec.RWR-0003-2017. PMID:29651979
Critical Minireview: The Fate of tRNA(Cys) during Oxidative Stress in Bacillus subtilis.
Biomolecules. 2017 Jan 20; 7(1). pii:E6. doi:10.3390/biom7010006. PMID:28117687
How bacterial cells keep ribonucleases under control.
FEMS microbiology reviews. 2015 May; 39(3):350-61. doi:10.1093/femsre/fuv012. PMID:25878039
Messenger RNA degradation in bacterial cells.
Annual review of genetics. 2014; 48:537-59. doi:10.1146/annurev-genet-120213-092340. PMID:25292357
Caught in the act: RNA-Seq provides novel insights into mRNA degradation.
Molecular microbiology. 2014 Oct; 94(1):5-8. doi:10.1111/mmi.12769. PMID:25155548
RNA degradation in Bacillus subtilis: an interplay of essential endo- and exoribonucleases.
Molecular microbiology. 2012 Jun; 84(6):1005-17. doi:10.1111/j.1365-2958.2012.08072.x. PMID:22568516
The role of 3'-5' exoribonucleases in RNA degradation.
Progress in molecular biology and translational science. 2009; 85:187-229. doi:10.1016/S0079-6603(08)00805-2. PMID:19215773
The PNPase, exosome and RNA helicases as the building components of evolutionarily-conserved RNA degradation machines.
Journal of biomedical science. 2007 Jul; 14(4):523-32. . PMID:17514363
Polynucleotide phosphorylase: an evolutionary conserved gene with an expanding repertoire of functions.
Pharmacology & therapeutics. 2006 Oct; 112(1):243-63. . PMID:16733069
mRNA degradation. A tale of poly(A) and multiprotein machines.
Trends in genetics : TIG. 1999 Jan; 15(1):24-8. . PMID:10087930
Original Publications
A comprehensive study of the interactions in the B. subtilis degradosome with special emphasis on the role of the small proteins SR1P and SR7P.Molecular microbiology. 2023 Nov 22; . PMID: 37994189
Identification of Genes Required for Swarming Motility in Bacillus subtilis Using Transposon Mutagenesis and High-Throughput Sequencing (TnSeq).Journal of bacteriology. 2022 Jun 21; 204(6):e0008922. PMID: 35638827
Analysis of mRNA Decay Intermediates in Bacillus subtilis 3' Exoribonuclease and RNA Helicase Mutant Strains.mBio. 2022 Mar 21; :e0040022. PMID: 35311531
Single molecule/particle tracking analysis program SMTracker 2.0 reveals different dynamics of proteins within the RNA degradosome complex in Bacillus subtilis.Nucleic acids research. 2021 Aug 20; . PMID: 34417617
Identification of an RNA sponge that controls the RoxS riboregulator of central metabolism in Bacillus subtilis.Nucleic acids research. 2021 Jun 7; . PMID: 34096591
Polynucleotide phosphorylase and RNA helicase CshA cooperate in Bacillus subtilis mRNA decay.RNA biology. 2020 Dec 16; . PMID: 33323028
Analysis of tRNA processing in the absence of CCAase in Bacillus subtilis.
Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]. 2019 Apr 12; . doi:10.1007/s42770-019-00075-5. PMID:31041723
Characterization of Staphylococcus epidermidis Polynucleotide phosphorylase and its interactions with ribonucleases RNase J1 and RNase J2.
Biochemical and biophysical research communications. 2018 Jan 08; 495(2):2078-2084. pii:S0006-291X(17)32450-6. doi:10.1016/j.bbrc.2017.12.056. PMID:29242153
In-Culture Cross-Linking of Bacterial Cells Reveals Large-Scale Dynamic Protein-Protein Interactions at the Peptide Level.
Journal of proteome research. 2017 Jul 07; 16(7):2457-2471. doi:10.1021/acs.jproteome.7b00068. PMID:28516784
Inhibition of homologous phosphorolytic ribonucleases by citrate may represent an evolutionarily conserved communicative link between RNA degradation and central metabolism.
Nucleic acids research. 2017 Mar 03; . doi:10.1093/nar/gkx114. PMID:28334892
Structural Insights into a Unique Dimeric DEAD-Box Helicase CshA that Promotes RNA Decay.
Structure (London, England : 1993). 2017 Mar 07; 25(3):469-481. pii:S0969-2126(17)30012-6. doi:10.1016/j.str.2017.01.012. PMID:28238534
Localization of Components of the RNA-Degrading Machine in Bacillus subtilis.
Frontiers in microbiology. 2016; 7:1492. . PMID:27708634
Expression of multiple Bacillus subtilis genes is controlled by decay of slrA mRNA from Rho-dependent 3' ends.
Nucleic acids research. 2016 Apr 20; 44(7):3364-72. doi:10.1093/nar/gkw069. PMID:26857544
Interaction of Bacillus subtilis Polynucleotide Phosphorylase and RNase Y: STRUCTURAL MAPPING AND EFFECT ON mRNA TURNOVER.
The Journal of biological chemistry. 2016 Mar 25; 291(13):6655-63. doi:10.1074/jbc.M115.711044. PMID:26797123
Global analysis of mRNA decay intermediates in Bacillus subtilis wild-type and polynucleotide phosphorylase-deletion strains.
Molecular microbiology. 2014 Oct; 94(1):41-55. doi:10.1111/mmi.12748. PMID:25099370
Exposure of Bacillus subtilis to mercury induces accumulation of shorter tRNA Cys species.
Metallomics : integrated biometal science. 2013 Apr; 5(4):398-403. doi:10.1039/c3mt20203h. PMID:23529473
Dissection of the network of interactions that links RNA processing with glycolysis in the Bacillus subtilis degradosome.
Journal of molecular biology. 2012 Feb 10; 416(1):121-36. doi:10.1016/j.jmb.2011.12.024. PMID:22198292
5' End-independent RNase J1 endonuclease cleavage of Bacillus subtilis model RNA.
The Journal of biological chemistry. 2011 Oct 07; 286(40):34932-40. doi:10.1074/jbc.M111.287409. PMID:21862575
Polynucleotide phosphorylase exonuclease and polymerase activities on single-stranded DNA ends are modulated by RecN, SsbA and RecA proteins.
Nucleic acids research. 2011 Nov; 39(21):9250-61. doi:10.1093/nar/gkr635. PMID:21859751
RNase Y in Bacillus subtilis: a Natively disordered protein that is the functional equivalent of RNase E from Escherichia coli.
Journal of bacteriology. 2011 Oct; 193(19):5431-41. doi:10.1128/JB.05500-11. PMID:21803996
The RNA degradosome in Bacillus subtilis: identification of CshA as the major RNA helicase in the multiprotein complex.
Molecular microbiology. 2010 Aug; 77(4):958-71. doi:10.1111/j.1365-2958.2010.07264.x. PMID:20572937
Initiation of decay of Bacillus subtilis rpsO mRNA by endoribonuclease RNase Y.
Journal of bacteriology. 2010 Jul; 192(13):3279-86. doi:10.1128/JB.00230-10. PMID:20418391
Characterization of tRNA(Cys) processing in a conditional Bacillus subtilis CCase mutant reveals the participation of RNase R in its quality control.
Microbiology (Reading, England). 2010 Jul; 156(Pt 7):2102-11. doi:10.1099/mic.0.034652-0. PMID:20360175
Bacillus subtilis trp Leader RNA: RNase J1 endonuclease cleavage specificity and PNPase processing.
The Journal of biological chemistry. 2009 Sep 25; 284(39):26394-401. doi:10.1074/jbc.M109.015875. PMID:19638340
Processing and stability of inducibly expressed rpsO mRNA derivatives in Bacillus subtilis.
Journal of bacteriology. 2009 Sep; 191(18):5680-9. doi:10.1128/JB.00740-09. PMID:19633085
Bacillus subtilis polynucleotide phosphorylase 3'-to-5' DNase activity is involved in DNA repair.
Nucleic acids research. 2009 Jul; 37(12):4157-69. doi:10.1093/nar/gkp314. PMID:19433509
Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing.
Molecular & cellular proteomics : MCP. 2009 Jun; 8(6):1350-60. doi:10.1074/mcp.M800546-MCP200. PMID:19193632
Addition of poly(A) and heteropolymeric 3' ends in Bacillus subtilis wild-type and polynucleotide phosphorylase-deficient strains.
Journal of bacteriology. 2005 Jul; 187(14):4698-706. . PMID:15995184
Participation of 3'-to-5' exoribonucleases in the turnover of Bacillus subtilis mRNA.
Journal of bacteriology. 2005 Apr; 187(8):2758-67. . PMID:15805522
A comprehensive proteome map of growing Bacillus subtilis cells.
Proteomics. 2004 Oct; 4(10):2849-76. . PMID:15378759
Recycling of a regulatory protein by degradation of the RNA to which it binds.
Proceedings of the National Academy of Sciences of the United States of America. 2004 Mar 02; 101(9):2747-51. . PMID:14976255
Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis.
Journal of bacteriology. 2002 May; 184(9):2500-20. . PMID:11948165
Protection against 3'-to-5' RNA decay in Bacillus subtilis.
Journal of bacteriology. 1999 Dec; 181(23):7323-30. . PMID:10572137
Decay of ermC mRNA in a polynucleotide phosphorylase mutant of Bacillus subtilis.
Journal of bacteriology. 1998 Nov; 180(22):5968-77. . PMID:9811656
Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis.
Molecular microbiology. 1996 Jan; 19(2):343-56. . PMID:8825779
In vitro processing activity of Bacillus subtilis polynucleotide phosphorylase.
Molecular microbiology. 1996 Jan; 19(2):329-42. . PMID:8825778
Properties of a Bacillus subtilis polynucleotide phosphorylase deletion strain.
Journal of bacteriology. 1996 Apr; 178(8):2375-82. . PMID:8636041
Enzymatic basis for hydrolytic versus phosphorolytic mRNA degradation in Escherichia coli and Bacillus subtilis.
Proceedings of the National Academy of Sciences of the United States of America. 1991 Apr 15; 88(8):3277-80. . PMID:1707536
PNPase in ''E. coli
Polynucleotide phosphorylase activity may be modulated by metabolites in Escherichia coli.
The Journal of biological chemistry. 2011 Apr 22; 286(16):14315-23. doi:10.1074/jbc.M110.200741. PMID:21324911
Crystal structure of Escherichia coli polynucleotide phosphorylase core bound to RNase E, RNA and manganese: implications for catalytic mechanism and RNA degradosome assembly.
Journal of molecular biology. 2009 May 29; 389(1):17-33. doi:10.1016/j.jmb.2009.03.051. PMID:19327365
Regulation of Escherichia coli polynucleotide phosphorylase by ATP.
The Journal of biological chemistry. 2008 Oct 10; 283(41):27355-9. doi:10.1074/jbc.C800113200. PMID:18650428
Page visits: 8581
Time of last update: 2025-04-06 09:06:45
Author of last update: Jstuelk