ccpN

ccpN
168

transcriptional repressor (CcpN family) of gluconeogenetic genes and of sr1, repression in the presence of glucose, involved in the control of cell elongation

Locus
BSU_25250
Molecular weight
23.72 kDa
Isoelectric point
7.22
Protein length
Gene length
Function
repressor of genes involved in gluconeogenesis (gapB, pckA) and of sr1
Product
transcriptional regulator (CcpN family)
Essential
no
Synonyms
ccpN, yqzB

Genomic Context

List of homologs in different organisms, belongs to COG2905 (Galperin et al., 2021)

This gene is a member of the following regulons

CcpN regulon

Gene
Coordinates
2,604,959  2,605,597
Phenotypes of a mutant
Impaired growth on glucose due to re-routing of carbon from glycolysis to the pentose phosphate pathway PubMed
The protein
Catalyzed reaction/ biological activity
transcription repression of the gapB, pckA, and sr1 genes in the presence of glucose PubMed
Protein family
HTH deoR-type domain (aa 6-70) (according to UniProt)
2 CBS domains (aa 83-139, aa 148-211) (according to UniProt)
Structure
Effectors of protein activity
YqfL (negative effector of CcpN activity) PubMed
ATP enhances CcpN-dependent repression, ADP counteracts the repressing activity of CcpN PubMed
Expression and Regulation
Operons
Genes
Description
Regulation
constitutive PubMed
Additional information
the intracellular concentration of CcpN is about 4 myM (according to PubMed).
Open in new tab

ccpNyqfL

2025-07-20 08:02:20

ghost

119

3fe4ca7e20abf4f06c8caf7d6e2bf664f557186b

0E37F61E4E6EAE016A7E0E8F6D82E3B6339F8D91

Biological materials
Mutant
GP3407 (ΔccpN::kan) , available in Jörg Stülke's lab
GP1678 (Δ(ccpN-yqfL::aphA3 trpC2), available in Jörg Stülke's lab
MGNA-C493 (yqzB::erm), available at the NBRP B. subtilis, Japan
DB104 ccpN::cat, available in Sabine Brantl's lab
GP1128 ccpN::cat, available in Jörg Stülke's lab
BKE25250 (ccpN::erm  trpC2) available at BGSCPubMed, upstream reverse: _UP1_CACCACCTTTTCACTTCATA,  downstream forward: _UP4_TAAGATTGCAAACTAACGGG
BKK25250 (ccpN::kan  trpC2) available at BGSCPubMed, upstream reverse: _UP1_CACCACCTTTTCACTTCATA,  downstream forward: _UP4_TAAGATTGCAAACTAACGGG
Expression vectors
pGP2923 (N-terminal His-tag, purification from E. coli, in pWH844), available in Jörg Stülke's lab
Two-hybrid system
B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH), available in Jörg Stülke's lab
Antibody
available in Sabine Brantl's lab
Labs working on this gene/protein
Stephane Aymerich, Microbiology and Molecular Genetics, INRA Paris-Grignon, France
Sabine Brantl, Bacterial Genetics, Friedrich-Schiller-University of Jena, Germany homepage
Uwe Sauer, ETH Zrich, Switzerland homepage
References
Reviews
Brantl S, Licht A Characterisation of Bacillus subtilis transcriptional regulators involved in metabolic processes. Current protein & peptide science. 2010 Jun; 11(4):274-91. . PMID:20408793
Original Publications
Sharma K, Sultana T, Dahms TES, Dillon JRCcpN: a moonlighting protein regulating catabolite repression of gluconeogenic genes in Bacillus subtilis also affects cell length and interacts with DivIVA.Canadian journal of microbiology. 2020 Aug 7; :1-10. PMID: 32762636
Declerck N, Royer CA Interactions in gene expression networks studied by two-photon fluorescence fluctuation spectroscopy. Methods in enzymology. 2013; 519:203-30. doi:10.1016/B978-0-12-405539-1.00007-5. pii:B978-0-12-405539-1.00007-5. PMID:23280112
Ferguson ML, Le Coq D, Jules M, Aymerich S, Radulescu O, Declerck N, Royer CA Reconciling molecular regulatory mechanisms with noise patterns of bacterial metabolic promoters in induced and repressed states. Proceedings of the National Academy of Sciences of the United States of America. 2012 Jan 03; 109(1):155-60. doi:10.1073/pnas.1110541108. PMID:22190493
Eckart RA, Brantl S, Licht A Search for additional targets of the transcriptional regulator CcpN from Bacillus subtilis. FEMS microbiology letters. 2009 Oct; 299(2):223-31. doi:10.1111/j.1574-6968.2009.01754.x. PMID:19732150
Licht A, Brantl S The transcriptional repressor CcpN from Bacillus subtilis uses different repression mechanisms at different promoters. The Journal of biological chemistry. 2009 Oct 30; 284(44):30032-8. doi:10.1074/jbc.M109.033076. PMID:19726675
Tännler S, Fischer E, Le Coq D, Doan T, Jamet E, Sauer U, Aymerich S CcpN controls central carbon fluxes in Bacillus subtilis. Journal of bacteriology. 2008 Sep; 190(18):6178-87. doi:10.1128/JB.00552-08. PMID:18586936
Licht A, Golbik R, Brantl S Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis. Journal of molecular biology. 2008 Jun 27; 380(1):17-30. doi:10.1016/j.jmb.2008.05.002. PMID:18511073
Licht A, Brantl S Transcriptional repressor CcpN from Bacillus subtilis compensates asymmetric contact distribution by cooperative binding. Journal of molecular biology. 2006 Dec 01; 364(3):434-48. . PMID:17011578
Licht A, Preis S, Brantl S Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in Bacillus subtilis. Molecular microbiology. 2005 Oct; 58(1):189-206. . PMID:16164558
Servant P, Le Coq D, Aymerich S CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Molecular microbiology. 2005 Mar; 55(5):1435-51. . PMID:15720552

2234D81F8F9B92EAF1CF6F73BEC92D4DE54E2636

Page visits: 7755

Time of last update: 2025-07-27 22:22:26

Author of last update: Jstuelk