ptsI

ptsI
168

Enzyme I, general (non sugar-specific) component of the PTS

Locus
BSU_13910
Molecular weight
62.90 kDa
Isoelectric point
4.59
Protein length
Gene length
Function
PTS-dependent sugar transport
Product
phosphotransferase system (PTS) enzyme I
Essential
no
E.C.
2.7.3.9
Synonyms
ptsI

Genomic Context

List of homologs in different organisms, belongs to COG1080 (Galperin et al., 2021)

This gene is a member of the following regulons

Gene
Coordinates
1,459,650 1,461,362
Phenotypes of a mutant
poorly transformable PubMed
inactivation suppresses the essentiality of mbl PubMed
The protein
Catalyzed reaction/ biological activity
L-histidyl-[protein] + phosphoenolpyruvate --> N-phospho-L-histidyl-[protein] + pyruvate (according to UniProt)
PEP-dependent autophosphorylation on His-189, transfer of the phosphoryl group to HPr]] (His-15)
Protein family
PEP-utilizing enzyme family (according to UniProt)
HPr binding site (N-Terminal Domain)
pyruvate binding site (C-Terminal Domain)
pyrophosphate/phosphate carrier histidine (central Domain)
Magnesium
Structure
2WQD (PDB) (Enzyme I from Staphylococcus aureus, 68% identity) PubMed
Modification
transient autophosphorylation on His-189
in vivo also phosphorylated on Ser-34 or Ser-36 PubMed
cytoplasm, even distribution PubMed
Additional information
belongs to the 100 most abundant proteins PubMed
Expression and Regulation
Operons
Genes
Description
Sigma factors
SigA: sigma factor, PubMed, in sigA regulon
Open in new tab

ptsHptsI

2025-03-26 22:46:18

Jstuelk

116

f18fb98abd8f13ce4f268a312c4844b7c2224ad1

9C318C6E1750955A8C473FE06158A7E5F5C52794

Description
Regulation
expression activated by glucose (2 fold) (GlcT) PubMed
Regulatory mechanism
stringent response: negative regulation, in stringent response
GlcT: antitermination, via the GlcT-dependent RNA switch PubMed, in glcT regulon
Sigma factors
SigA: sigma factor, PubMed, in sigA regulon
Open in new tab

ptsGptsI

2025-04-04 02:40:22

ghost

157

0d1ff574eb4a847a56452c8c7084e1e199118b30

EEB2B4E2EFD5EB6876956633E22D1305FFE807F7

Biological materials
Mutant
available in Jörg Stülke's lab:
GP864 (ptsI::ermC)
GP778 (glcT-ptsG-ptsH-ptsI::spc) PubMed
BKE13910 (ptsI::erm trpC2) available at BGSC, PubMed, upstream reverse: _UP1_ACCAATCCCTTTTAATTCTT, downstream forward: _UP4_TAATGTACAAAAACCAGACG
BKK13910 (ptsI::kan trpC2) available at BGSC, PubMed, upstream reverse: _UP1_ACCAATCCCTTTTAATTCTT, downstream forward: _UP4_TAATGTACAAAAACCAGACG
Expression vectors
pAG3 (His-tag) PubMed, available in Galinier lab
for expression, purification in E. coli (His-tag), in pWH844: pGP813 available in Jörg Stülke's lab
GFP fusion
GP1268, ptsI-cfp, available in Jörg Stülke's lab PubMed
Labs working on this gene/protein
Jörg Stülke, University of Göttingen, Germany Homepage
References
Reviews
Deutscher J, Aké FM, Derkaoui M, Zébré AC, Cao TN, Bouraoui H, Kentache T, Mokhtari A, Milohanic E, Joyet P The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiology and molecular biology reviews : MMBR. 2014 Jun; 78(2):231-56. doi:10.1128/MMBR.00001-14. PMID:24847021
Görke B, Stülke J Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature reviews. Microbiology. 2008 Aug; 6(8):613-24. doi:10.1038/nrmicro1932. PMID:18628769
Deutscher J, Francke C, Postma PW How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiology and molecular biology reviews : MMBR. 2006 Dec; 70(4):939-1031. . PMID:17158705
Stülke J, Hillen W Regulation of carbon catabolism in Bacillus species. Annual review of microbiology. 2000; 54:849-80. . PMID:11018147
Stülke J, Hillen W Coupling physiology and gene regulation in bacteria: the phosphotransferase sugar uptake system delivers the signals. Die Naturwissenschaften. 1998 Dec; 85(12):583-92. . PMID:9871918
Original Publications
Koo BM, Todor H, Sun J, van Gestel J, Hawkins JS, Hearne CC, Banta AB, Huang KC, Peters JM, Gross CAComprehensive double-mutant analysis of the Bacillus subtilis envelope using double-CRISPRi.bioRxiv : the preprint server for biology. 2024 Aug 16; . PMID: 39185233
O'Reilly FJ, Graziadei A, Forbrig C, Bremenkamp R, Charles K, Lenz S, Elfmann C, Fischer L, Stülke J, Rappsilber JProtein complexes in cells by AI-assisted structural proteomics.Molecular systems biology. 2023 Feb 23; :e11544. PMID: 36815589
Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A, Peters JM, Hachmann AB, Rudner DZ, Allen KN, Typas A, Gross CA Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis. Cell systems. 2017 Mar 22; 4(3):291-305.e7. pii:S2405-4712(16)30447-1. doi:10.1016/j.cels.2016.12.013. PMID:28189581
Govindarajan S, Elisha Y, Nevo-Dinur K, Amster-Choder O The general phosphotransferase system proteins localize to sites of strong negative curvature in bacterial cells. mBio. 2013 Oct 15; 4(5):e00443-13. doi:10.1128/mBio.00443-13. pii:e00443-13. PMID:24129255
Rothe FM, Wrede C, Lehnik-Habrink M, Görke B, Stülke J Dynamic localization of a transcription factor in Bacillus subtilis: the LicT antiterminator relocalizes in response to inducer availability. Journal of bacteriology. 2013 May; 195(10):2146-54. doi:10.1128/JB.00117-13. PMID:23475962
Tojo S, Kumamoto K, Hirooka K, Fujita Y Heavy involvement of stringent transcription control depending on the adenine or guanine species of the transcription initiation site in glucose and pyruvate metabolism in Bacillus subtilis. Journal of bacteriology. 2010 Mar; 192(6):1573-85. doi:10.1128/JB.01394-09. PMID:20081037
Oberholzer AE, Schneider P, Siebold C, Baumann U, Erni B Crystal structure of enzyme I of the phosphoenolpyruvate sugar phosphotransferase system in the dephosphorylated state. The Journal of biological chemistry. 2009 Nov 27; 284(48):33169-76. doi:10.1074/jbc.M109.057612. PMID:19801641
Macek B, Mijakovic I, Olsen JV, Gnad F, Kumar C, Jensen PR, Mann M The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Molecular & cellular proteomics : MCP. 2007 Apr; 6(4):697-707. . PMID:17218307
Eymann C, Dreisbach A, Albrecht D, Bernhardt J, Becher D, Gentner S, Tam le T, Büttner K, Buurman G, Scharf C, Venz S, Völker U, Hecker M A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics. 2004 Oct; 4(10):2849-76. . PMID:15378759
Blencke HM, Homuth G, Ludwig H, Mäder U, Hecker M, Stülke J Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metabolic engineering. 2003 Apr; 5(2):133-49. . PMID:12850135
Garrity LF, Schiel SL, Merrill R, Reizer J, Saier MH, Ordal GW Unique regulation of carbohydrate chemotaxis in Bacillus subtilis by the phosphoenolpyruvate-dependent phosphotransferase system and the methyl-accepting chemotaxis protein McpC. Journal of bacteriology. 1998 Sep; 180(17):4475-80. . PMID:9721285

14ED1AF5038F43F3B151FCBABE6CFC5A2DA3AA6E

Page visits: 7023

Time of last update: 2025-04-04 07:02:59

Author of last update: Jstuelk