pckA

pckA
168

phosphoenolpyruvate carboxykinase

Locus
BSU_30560
Molecular weight
58.13 kDa
Isoelectric point
5.12
Protein length
Gene length
Function
synthesis of phosphoenolpyruvate
Product
phosphoenolpyruvate carboxykinase
Essential
no
E.C.
4.1.1.49
Synonyms
pckA

Genomic Context

List of homologs in different organisms, belongs to COG1866 (Galperin et al., 2021)

This gene is a member of the following regulons

SigA regulon, CcpN regulon

Gene
Coordinates
3,129,530  3,131,113
The protein
Catalyzed reaction/ biological activity
ATP + oxaloacetate --> ADP + CO2 + phosphoenolpyruvate (according to UniProt)
Protein family
phosphoenolpyruvate carboxykinase (ATP) family (single member, according to UniProt)
Nucleotide binding Domain (233240)
Structure
1J3B (PDB) (from Thermus thermophilus, 55.1% identity) PubMed
cytoplasm (according to Swiss-Prot),  cytoplasm
Additional information
PckA is degraded in the forespore using MdfA as the adaptor protein PubMed
Expression and Regulation
Operons
Genes
Description
Regulation
repressed by glucose (35-fold) CcpN PubMed
Regulatory mechanism
CcpN: repression, PubMed, in ccpN regulon
Sigma factors
SigA: sigma factor, PubMed, in sigA regulon
Open in new tab

pckA

2025-08-11 08:51:59

ghost

112

c51496c43c3d7c242b6ec156cd659276ffd6d4b4

709069FD604114640A936EAD2D10F54B494E230C

Biological materials
Mutant
1A1005 ( pckA::spec), PubMed, available at BGSC
1A996 ( pckA::spec), PubMed, available at BGSC
GP1147 (pckA::neo), available in Jörg Stülke's lab
BKE30560 (pckA::erm  trpC2) available at BGSCPubMed, upstream reverse: _UP1_CATATGAAACCTTCCTTTAT,  downstream forward: _UP4_TAAAAAACAAAAGCCAAGAG
BKK30560 (pckA::kan  trpC2) available at BGSCPubMed, upstream reverse: _UP1_CATATGAAACCTTCCTTTAT,  downstream forward: _UP4_TAAAAAACAAAAGCCAAGAG
Expression vectors
pGP1753 (N-terminal Strep-tag, for SPINE, purification from B. subtilis, in pGP380) (available in Jörg Stülke's lab) PubMed
pGP1762 (for expression, purification in E. coli with N-terminal His-tag, in pWH844, available in Jörg Stülke's lab)
pGP1763 (for expression, purification in E. coli with N-terminal Strep-tag, in pGP172, available in Jörg Stülke's lab)
Two-hybrid system
B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH), available in Jörg Stülke's lab
FLAG-tag construct
GP1129 (spc, based on pGP1331), available in Jörg Stülke's lab PubMed
LacZ fusion
pGP3312 (cat, based on pAC5), available in Jörg Stülke's lab
GFP fusion
GP1430 (spc, based on pGP1870), available in Jörg Stülke's lab
Labs working on this gene/protein
Stephane Aymerich, Microbiology and Molecular Genetics, INRA Paris-Grignon, France
References
Riley EP, Lyda JA, Reyes-Matte O, Sugie J, Kasu IR, Enustun E, Armbruster E, Ravishankar S, Isaacson RL, Camp AH, Lopez-Garrido J, Pogliano KDevelopmentally-regulated proteolysis by MdfA and ClpCP mediates metabolic differentiation during Bacillus subtilis sporulation.bioRxiv : the preprint server for biology. 2024 Nov 26; . PMID: 39651166
O'Reilly FJ, Graziadei A, Forbrig C, Bremenkamp R, Charles K, Lenz S, Elfmann C, Fischer L, Stülke J, Rappsilber JProtein complexes in cells by AI-assisted structural proteomics.Molecular systems biology. 2023 Feb 23; :e11544. PMID: 36815589
Meyer FM, Stülke J Malate metabolism in Bacillus subtilis: distinct roles for three classes of malate-oxidizing enzymes. FEMS microbiology letters. 2013 Feb; 339(1):17-22. doi:10.1111/1574-6968.12041. PMID:23136871
Ferguson ML, Le Coq D, Jules M, Aymerich S, Radulescu O, Declerck N, Royer CA Reconciling molecular regulatory mechanisms with noise patterns of bacterial metabolic promoters in induced and repressed states. Proceedings of the National Academy of Sciences of the United States of America. 2012 Jan 03; 109(1):155-60. doi:10.1073/pnas.1110541108. PMID:22190493
Meyer FM, Gerwig J, Hammer E, Herzberg C, Commichau FM, Völker U, Stülke J Physical interactions between tricarboxylic acid cycle enzymes in Bacillus subtilis: evidence for a metabolon. Metabolic engineering. 2011 Jan; 13(1):18-27. doi:10.1016/j.ymben.2010.10.001. PMID:20933603
Tännler S, Fischer E, Le Coq D, Doan T, Jamet E, Sauer U, Aymerich S CcpN controls central carbon fluxes in Bacillus subtilis. Journal of bacteriology. 2008 Sep; 190(18):6178-87. doi:10.1128/JB.00552-08. PMID:18586936
Sugahara M, Ohshima N, Ukita Y, Sugahara M, Kunishima NStructure of ATP-dependent phosphoenolpyruvate carboxykinase from Thermus thermophilus HB8 showing the structural basis of induced fit and thermostability.Acta crystallographica. Section D, Biological crystallography. 2005 Nov; 61(Pt 11):1500-7. PMID: 16239727
Servant P, Le Coq D, Aymerich S CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Molecular microbiology. 2005 Mar; 55(5):1435-51. . PMID:15720552
Blencke HM, Homuth G, Ludwig H, Mäder U, Hecker M, Stülke J Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metabolic engineering. 2003 Apr; 5(2):133-49. . PMID:12850135
Lapidus A, Galleron N, Sorokin A, Ehrlich SD Sequencing and functional annotation of the Bacillus subtilis genes in the 200 kb rrnB-dnaB region. Microbiology (Reading, England). 1997 Nov; 143 ( Pt 11):3431-41. . PMID:9387221

74D4616D1A550D87182FAAC2A4AF6E04F81E1572

Page visits: 8746

Time of last update: 2025-08-17 22:22:44

Author of last update: Jstuelk