aimP

aimP
168

peptide, part of the arbitrium peptide-based communication system, processed AimP peptide inactivates AimR

Locus
BSU_20850
Molecular weight
4.08 kDa
Isoelectric point
6.26
Protein length
Gene length
Function
control of AimR activity
Product
arbitrium peptide
Essential
no
E.C.
null
Synonyms
aimP, AimP, yopL

Genomic Context

Categories containing this gene/protein

List of homologs in different organisms

This gene is a member of the following regulons

Gene
Coordinates
2,208,855  2,208,980
Phenotypes of a mutant
increased prophage production PubMed
sharper plaque morphology (similar to yopN mutant) PubMed
The protein
Catalyzed reaction/ biological activity
Proteolytically cleaved in extracellular space to yield hexapeptide (GMPRGA) regulator. Hexapeptide re-enters cells and binds to AimR to promote SPbeta lysogeny.  (PubMed)
Structure
Expression and Regulation
Operons
Genes
Description
Expression
repressed by MrpR
Regulatory mechanism
MrpR: repression, in mrpR regulon
Open in new tab

Array

2025-03-19 21:04:29

Jstuelk

66

D2DC54A2C3ACA3E43834E682BFD48B5E0755B52F

218FA1DAE15E4035B58D89E3FFE4707CD53666F8

Genes
Description
Regulation
expressed during the lytic cycle PubMed
Regulatory mechanism
CcpA: repression, CcpA: transcription repression PubMed, in ccpA regulon
Open in new tab

aimP

2025-03-27 11:17:41

Jstuelk

100

9D9431816AD7B988EB0E42A3FE51BDE23A64FD52

533146C35D4E6B901E585DDB431E2CD07B6D6F5E

Additional information
produce as 43 aa pro-peptide, secreted to the medium, and processed to the mature 6 aa AimX peptide that can be taken up by the cells again PubMed
Biological materials
Mutant
BKE20850 (aimP::erm  trpC2) available at BGSCPubMed, upstream reverse: _UP1_CATTGTCTCACCTCCTTTAA,  downstream forward: _UP4_TAAAATCCATTGACACATAA
BKK20850 (aimP::kan  trpC2) available at BGSCPubMed, upstream reverse: _UP1_CATTGTCTCACCTCCTTTAA,  downstream forward: _UP4_TAAAATCCATTGACACATAA
References
Kohm K, Clanner AV, Hertel R, Commichau FMClosely related and yet special - how SPβ family phages control lysis-lysogeny decisions.Trends in microbiology. 2024 Dec 6; . PMID: 39645480
Kohm K, Jalomo-Khayrova E, Krüger A, Basu S, Steinchen W, Bange G, Frunzke J, Hertel R, Commichau FM, Czech LStructural and functional characterization of MrpR, the master repressor of the Bacillus subtilis prophage SPβ.Nucleic acids research. 2023 Aug 21; . PMID: 37602373
Bruce JB, Lion S, Buckling A, Westra ER, Gandon SRegulation of prophage induction and lysogenization by phage communication systems.Current biology : CB. 2021 Sep 22; . PMID: 34562385
Brady A, Quiles-Puchalt N, Gallego Del Sol F, Zamora-Caballero S, Felipe-Ruíz A, Val-Calvo J, Meijer WJJ, Marina A, Penadés JRThe arbitrium system controls prophage induction.Current biology : CB. 2021 Sep 22; . PMID: 34562384
Guan Z, Pei K, Wang J, Cui Y, Zhu X, Su X, Zhou Y, Zhang D, Tang C, Yin P, Liu Z, Zou T Structural insights into DNA recognition by AimR of the arbitrium communication system in the SPbeta phage. Cell discovery. 2019; 5:29. doi:10.1038/s41421-019-0101-2. PMID:31149347
Gallego Del Sol F, Penadés JR, Marina A Deciphering the Molecular Mechanism Underpinning Phage Arbitrium Communication Systems. Molecular cell. 2019 Feb 06; . pii:S1097-2765(19)30045-0. doi:10.1016/j.molcel.2019.01.025. PMID:30745087
Zhen X, Zhou H, Ding W, Zhou B, Xu X, Perčulija V, Chen CJ, Chang MX, Choudhary MI, Ouyang S Structural basis of AimP signaling molecule recognition by AimR in Spbeta group of bacteriophages. Protein & cell. 2019 Feb; 10(2):131-136. doi:10.1007/s13238-018-0588-6. PMID:30421358
Dou C, Xiong J, Gu Y, Yin K, Wang J, Hu Y, Zhou D, Fu X, Qi S, Zhu X, Yao S, Xu H, Nie C, Liang Z, Yang S, Wei Y, Cheng W Structural and functional insights into the regulation of the lysis-lysogeny decision in viral communities. Nature microbiology. 2018 Nov; 3(11):1285-1294. doi:10.1038/s41564-018-0259-7. PMID:30323253
Wang Q, Guan Z, Pei K, Wang J, Liu Z, Yin P, Peng D, Zou T Structural basis of the arbitrium peptide-AimR communication system in the phage lysis-lysogeny decision. Nature microbiology. 2018 Nov; 3(11):1266-1273. doi:10.1038/s41564-018-0239-y. PMID:30224798
Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, Becher D, Bisicchia P, Botella E, Delumeau O, Doherty G, Denham EL, Fogg MJ, Fromion V, Goelzer A, Hansen A, Härtig E, Harwood CR, Homuth G, Jarmer H, Jules M, Klipp E, Le Chat L, Lecointe F, Lewis P, Liebermeister W, March A, Mars RA, Nannapaneni P, Noone D, Pohl S, Rinn B, Rügheimer F, Sappa PK, Samson F, Schaffer M, Schwikowski B, Steil L, Stülke J, Wiegert T, Devine KM, Wilkinson AJ, van Dijl JM, Hecker M, Völker U, Bessières P, Noirot P Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science (New York, N.Y.). 2012 Mar 02; 335(6072):1103-6. doi:10.1126/science.1206848. PMID:22383849
Irnov I, Sharma CM, Vogel J, Winkler WC Identification of regulatory RNAs in Bacillus subtilis. Nucleic acids research. 2010 Oct; 38(19):6637-51. doi:10.1093/nar/gkq454. PMID:20525796
Blencke HM, Homuth G, Ludwig H, Mäder U, Hecker M, Stülke J Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metabolic engineering. 2003 Apr; 5(2):133-49. . PMID:12850135
Blencke HM, Homuth G, Ludwig H, Mäder U, Hecker M, Stülke J Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metabolic engineering. 2003 Apr; 5(2):133-49. . PMID:12850135

20735BFECA52826F0F4D55843EEE7798F414993C

Page visits: 5314

Time of last update: 2025-04-09 15:49:08

Author of last update: Jstuelk