T-box

From SubtiWiki
Revision as of 12:27, 4 March 2015 by Jstuelk (talk | contribs) (Reviews on T-box regulation)
Jump to: navigation, search

The T-box element is an RNA switch that controls genes involved in amino acid metabolism.

In the absence of an amino acid, the uncharged tRNA binds the T-box region in the leader region of the mRNA of the controlled gene/ operon and thereby prevents the formation of a transcription terminator. The result is gene expression of the target gene in the absence of the specific amino acid.

Complete list of genes controlled by T-box elements

  • Induction by alanine limitation
  • Induction by aspartate limitation
  • Induction by histidine limitation
  • Induction by phenyalanine limitation
  • Induction by serine limitation
  • Induction by tyrosine limitation

Structure of a T-box ribowsitch

Melinda S Gerdeman, Tina M Henkin, Jennifer V Hines
Solution structure of the Bacillus subtilis T-box antiterminator RNA: seven nucleotide bulge characterized by stacking and flexibility.
J Mol Biol: 2003, 326(1);189-201
[PubMed:12547201] [WorldCat.org] [DOI] (P p)


Reviews on T-box regulation

Jinwei Zhang, Adrian R Ferré-D'Amaré
Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA-mRNA stacking and steric readout.
Mol Cell: 2014, 55(1);148-55
[PubMed:24954903] [WorldCat.org] [DOI] (I p)

Tina M Henkin
The T box riboswitch: A novel regulatory RNA that utilizes tRNA as its ligand.
Biochim Biophys Acta: 2014, 1839(10);959-963
[PubMed:24816551] [WorldCat.org] [DOI] (P p)

Nicholas J Green, Frank J Grundy, Tina M Henkin
The T box mechanism: tRNA as a regulatory molecule.
FEBS Lett: 2010, 584(2);318-24
[PubMed:19932103] [WorldCat.org] [DOI] (I p)

Ana Gutiérrez-Preciado, Tina M Henkin, Frank J Grundy, Charles Yanofsky, Enrique Merino
Biochemical features and functional implications of the RNA-based T-box regulatory mechanism.
Microbiol Mol Biol Rev: 2009, 73(1);36-61
[PubMed:19258532] [WorldCat.org] [DOI] (I p)

Michiel Wels, Tom Groot Kormelink, Michiel Kleerebezem, Roland J Siezen, Christof Francke
An in silico analysis of T-box regulated genes and T-box evolution in prokaryotes, with emphasis on prediction of substrate specificity of transporters.
BMC Genomics: 2008, 9;330
[PubMed:18625071] [WorldCat.org] [DOI] (I e)

T M Henkin, F J Grundy
Sensing metabolic signals with nascent RNA transcripts: the T box and S box riboswitches as paradigms.
Cold Spring Harb Symp Quant Biol: 2006, 71;231-7
[PubMed:17381302] [WorldCat.org] [DOI] (P p)

Frank J Grundy, Tessa R Moir, Margaret T Haldeman, Tina M Henkin
Sequence requirements for terminators and antiterminators in the T box transcription antitermination system: disparity between conservation and functional requirements.
Nucleic Acids Res: 2002, 30(7);1646-55
[PubMed:11917026] [WorldCat.org] [DOI] (I p)

M Pelchat, J Lapointe
Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation.
Biochem Cell Biol: 1999, 77(4);343-7
[PubMed:10546897] [WorldCat.org] (P p)

T M Henkin
tRNA-directed transcription antitermination.
Mol Microbiol: 1994, 13(3);381-7
[PubMed:7527891] [WorldCat.org] [DOI] (P p)

F J Grundy, T M Henkin
tRNA as a positive regulator of transcription antitermination in B. subtilis.
Cell: 1993, 74(3);475-82
[PubMed:8348614] [WorldCat.org] [DOI] (P p)


See also:

Back to regulons