Papers of the month

From SubtiWiki
Revision as of 19:38, 5 March 2019 by Jstuelk (talk | contribs) (2019)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search


  • March 2019
    • Lysine acetylation is an abundant yet poorly characterized posttranslational modification in bacteria. Now, Carabetta et al. from the lab of David Dubnau report that acetylation is a regulatory component of the function of HBsu in nucleoid compaction. Genetic experiments demonstrated that two potential members of the acetyltransferase family, YfmK and YdgE, can acetylate HBsu, and their potential acetylation sites of action on HBsu were identified. Additionally, purified YfmK was able to directly acetylate HBsu in vitro, suggesting that it is the second identified protein acetyltransferase in B. subtilis. The authors propose that at least one physiological function of the acetylation of HBsu at key lysine residues is to regulate nucleoid compaction, analogous to the role of histone acetylation in eukaryotes.
    • Relevant SubtiWiki pages: David Dubnau, HBsu, YfmK, YdgE, acetyltransferase family

  • February 2019
    • B. subtilis can form spores when cells are starved for nutrients. Now, Gray et al. from the lab of Leendert Hamoen describe that non-sporulating B. subtilis cells can survive deep starvation conditions for many months. During this period, cells become tolerant to antibiotics. These starved cells are not dormant but are growing and dividing, albeit with a doubling time close to 4 days. The authors call this extreme slow growth the 'oligotrophic growth state'. The sporulation genes mmgB, ydfR, and yisJ are strongly expressed during oligotrophic growth, whereas the unknown ywpE gene is severely repressed.
    • Relevant SubtiWiki pages: Leendert Hamoen, mmgB, ydfR, yisJ, ywpE

  • January 2019
    • Glyphosate is widely used herbicide that targets the EPSP synthase, an enzyme required for aromatic amino acid biosynthesis. However, the use of glyphosate is highly controversial, and the producing company has been accused to be responsible for the development of cancer in people that have used the compound. Interestingly, despite the wide use of this weed killer, only little is known about its uptake by cells. Now, Wicke et al. from the lab of Fabian Commichau and the iGEM team Göttingen have identified the first glyphosate transporter. Using suppressor screens with strains adapted to high concentrations of glyphosate, the team found that the glutamate transporter GltT does also transport glyphosate. In addition, the GltP protein is a minor glyphosate transporter.
    • Relevant SubtiWiki pages: Fabian Commichau, GltT, GltP, AroE, Biosynthesis/ acquisition of amino acids


  • December 2018
    • The essential DnaD protein is known to interact with the bacterial master replication initiation protein DnaA at the oriC, but structural and functional details of this interaction are lacking. Now, Martin et al. from the lab of Panos Soultanas demonstrate that both the N- and C-terminal domains of DnaD interact with the N-terminal domain I of DnaA. The study shows that the DnaA-interaction patch of DnaD is distinct from the DNA-interaction patch, suggesting that DnaD can bind simultaneously DNA and DnaA. The data suggest that DnaA and DnaD are working collaboratively in the oriC to locally melt the DNA duplex during replication initiation.
    • Relevant SubtiWiki pages: Panos Soultanas, DNA replication, DnaA, DnaD

  • November 2018
    • Even though B. subtilis is one of the best-characterized bacterial model organisms, recent proteomics studies identified only about 50% of its theoretical protein count. Now, Ravikumar et al. from the labs of Boris Macek and Ivan Mijakovic generated a comprehensive map of the proteome, phosphoproteome and acetylome of B. subtilis. The study covers 75% of the theoretical proteome (3,159 proteins), detected 1,085 phosphorylation and 4,893 lysine acetylation sites and performed a systematic bioinformatic characterization of the obtained data. A proteogenomic analysis identified 19 novel ORFs. The study provides the most extensive overview of the proteome and post-translational modifications for B. subtilis to date, with insights into functional annotation and evolutionary aspects of the B. subtilis genome.
    • Relevant SubtiWiki pages: Ivan Mijakovic, Boris Macek, phosphoproteins, protein modification

  • October 2018
    • Membrane-bound O-acyltransferases (MBOATs) are a superfamily of integral transmembrane enzymes present in all domains of life. In bacteria, they modify protective cell-surface polymers. Although many MBOAT proteins are important drug targets, little is known about their molecular architecture and functional mechanisms. Now, Ma et al. present the crystal structures of DltB, an MBOAT responsible for the D-alanylation of cell-wall teichoic acid, both alone and in complex with the D-alanyl donor protein DltC. The conserved catalytic histidine residue is located at the bottom of a highly conserved extracellular structural funnel and is connected to the intracellular DltC through a narrow tunnel.
    • Relevant SubtiWiki pages: DltB, DltC biosynthesis of teichoic acid

  • September 2018
    • Modification of tRNA anticodons plays a critical role in ensuring accurate translation. N4-acetylcytidine (ac4C) is present at the anticodon first position (position 34) of bacterial elongator tRNAMet. Now, Taniguchi et al. identified Bacillus subtilis ylbM (renamed tmcAL) as a novel gene responsible for ac4C34 formation, determined te structure of the protein and unraveled the unusual the molecular basis of ac4C34 formation. The ΔylbM strain displayed a cold-sensitive phenotype and a strong genetic interaction with TilS, the enzyme responsible for synthesizing lysidine (L) at position 34 of tRNAIle to facilitate AUA decoding.
    • Relevant SubtiWiki pages: YlbM, TilS, tRNA modification/ maturation

  • August 2018
    • Structural maintenance of chromosomes (SMC) complexes shape the genomes of virtually all organisms, but how they function remains incompletely understood. The condensin complexes act along contiguous DNA segments, thus processively enlarging DNA loops. Now, Wang et al. from the lab of David Rudner show that point mutants in the Smc nucleotide-binding domain that impair but do not eliminate ATPase activity not only exhibit delays in de novo loop formation but also have reduced rates of processive loop enlargement. These data provide in vivo evidence that SMC complexes function as loop extruders.
    • Relevant SubtiWiki pages: condensin, David Rudner, Smc, ParB

  • July 2018
    • Making the right choice for nutrient consumption is essential for bacteria for evolutionary success in a highly competetive environment. Now, Buffing et al. from the lab of Uwe Sauer have studied the regulatory mechanisms that allow dynamic adaptation between non-preferred and preferred carbon sources for Escherichia coli and Bacillus subtilis. The authors show that flux reversal from the preferred glucose to non-preferred pyruvate as the sole carbon source is primarily transcriptionally regulated. In the opposite direction, however, E. coli can reverse its flux instantaneously by means of allosteric regulation, whereas in B. subtilis this flux reversal is transcriptionally regulated.
    • Relevant SubtiWiki pages: metabolism, Uwe Sauer, GlcT, CggR, carbon core metabolism

  • June 2018
    • Individual microbial species are occupy distinct metabolic niches within multi-species communities. However, it has remained largely unclear whether metabolic specialization can similarly occur within a clonal bacterial population. More specifically, it is not clear what functions such specialization could provide and how specialization could be coordinated dynamically. Now, Rosenthal et al. from the lab of Michael Elowitz have shown that exponentially growing B. subtilis cultures divide into distinct interacting metabolic subpopulations. These subpopulations exhibit distinct growth rates and dynamic interconversion between states. Their results show that clonal populations can use metabolic specialization to control the environment through a process of dynamic, environmentally-sensitive state-switching.
    • Relevant SubtiWiki pages: metabolism, Michael Elowitz

  • May 2018
    • The YaaT, YlbF, and YmcA proteins form a complex that has been implicated in biofilm formation and the control of the phosphorelay. Now, DeLougheri et al. have shown that this complex acts as a specificity factor for RNase Y. The complex is required for the maturation of mRNAs of polycistronic mRNAs (including the well-studied cggR-gapA operon) and for the degradation of many riboswitch RNAs but not for the processing of small ncRNAs
    • Relevant SubtiWiki pages: RNase Y, cggR, gapA, riboswitch, Richard Losick

  • April 2018
    • Coexpression of proteins in response to pathway-inducing signals is the founding paradigm of gene regulation. Now, Lalanne et al. have shown that the relative abundance of co-regulated proteins requires precise tuning. Their work demonstrates that many bacterial gene clusters encoding conserved pathways have undergone massive divergence in transcript abundance and architectures via remodeling of internal promoters and terminators. Remarkably, these evolutionary changes are compensated post-transcriptionally to maintain preferred stoichiometry of protein synthesis rates.
    • Relevant SubtiWiki pages: carbon core metabolism, translation

  • March 2018
    • ß-lactam antibiotics interfere with cell wall synthesis, and result in cell death. The study by Kawai et al. from the lab of Jeff Errington shows that under conditions of higher osmolarity cell lysis is delayed. Moreover, the cells are additionally protected by lysozyme under these conditions. Lysozyme promotes the formation of L-forms making the bacteria resistant to ß-lactam antibiotics.
    • Relevant SubtiWiki pages: Jeff Errington, cell wall synthesis, penicillin-binding proteins

  • February 2018
    • Mutlu et al. discover a "phenotypic memory" which results from the carry-over of nutrients from the vegetative cell into the spore and which links sporulation timing and spore revival. The authors suggest that such an intrinsically generated memory leads to a tradeoff between spore quantity and spore quality, which could drive the emergence of complex microbial traits.
    • Relevant SubtiWiki pages: sporulation, Ilka Bischofs, Ald

  • January 2018
    • Rojas et al. discover an elegant feedback mechanism ensuring balanced membrane and cell-wall growth in Bacillus subtilis through mechanically induced electrical depolarization that transiently halts wall synthesis.
    • Relevant SubtiWiki pages: cell wall synthesis, cell shape, Mbl


  • February 2016
    • Recently, cell-cell communication by so-called nanotubes has been reported. Now, two papers from the lab of Sigal Ben-Yehuda implicate the phosphodiesterase YmdB in nanotube formation, intercellular molecular trade, and in the development of B. subtilis colonies.
    • Relevant SubtiWiki pages: Sigal Ben-Yehuda, YmdB


  • November 2015
    • Bacteria contain many classes of ion channels, but their functions have largely remained elusive. Now, Prindle et al. from the lab of Gürol M. Süel have shown that the YugO potassium ion channel is used to propagate electrical signals throughout Bacillus subtilis biofilms in a long-range process that coordinates the metabolic responses of the community.
    • Relevant SubtiWiki pages: Gürol M. Süel, YugO, biofilm formation

  • See comments on this issue:

  • June 2015
    • The precise quantification of the dynamic changes in metabolite concentrations is a major challenge in metabolomics. Two new studies make use of the combination of metablite-sensitive riboswitches with an in vitro selected Spinach aptamer, which binds a pro-fluorescent, cell-permeable small molecule mimic of the GFP chromophore. Fluorescence can then be determined as a measure of the concentration of the metabolite that binds the riboswitch. The present studies use this approach for the essential second messenger c-di-AMP as well as for S-adenosyl-methionine and guanine.
    • Relevant SubtiWiki pages: riboswitch, metabolism, methods

  • Mai 2015
    • In B. subtilis, ribosomal stalling is used to regulate the expression of the membrane protein biogenesis factor YidC2. This is achieved by stalling during translation of the MifM leader peptide. In the absence of structures of Gram-positive bacterial ribosomes, a molecular basis for species-specific stalling has remained unclear. Sohmen et al. have determined the structure of the MifM-stalled 70S ribosome and have unraveled a network of interactions between MifM and the ribosomal tunnel, which induces translational arrest. Complementary genetic analyses identify a single amino acid within ribosomal protein L22 that dictates the species specificity of the stalling event.
    • Relevant SubtiWiki pages: translation, ribosome, yidC2, MifM, L22

  • February 2015
    • To proliferate efficiently, cells must co-ordinate cell division with chromosome segregation. In B. subtilis, the nucleoid occlusion protein Noc binds to specific DNA sequences scattered around the chromosome and helps to protect genomic integrity by coupling the initiation of division to the progression of chromosome replication and segregation. However, how it inhibits division has remained unclear. Now, Adams et al. from the lab of Jeff Errington demonstrate that Noc associates with the cell membrane via an N-terminal amphipathic helix. Importantly, the membrane-binding affinity of this helix is weak and requires the assembly of nucleoprotein complexes, thus establishing a mechanism for DNA-dependent activation of Noc. Furthermore, division inhibition by Noc requires recruitment of Noc binding site DNA to the cell membrane and is dependent on its ability to bind DNA and membrane simultaneously. The results suggest a simple model in which the formation of large membrane-associated nucleoprotein complexes physically occludes assembly of the division machinery.
    • Relevant SubtiWiki pages: Noc, Jeff Errington, cell division, chromosome segregation

  • January 2015
    • Proteases are crucial for the maintenance of protein integrity, but also for controlling the cellular levels of specific proteins. For the LonA protease, it has so far been unknown how the protease can specifically target a selected protein as degradation target. Now, Mukherjee et al. from the lab of Daniel Kearns have studied the degradation of SwrA, a master regulator of flagellar biosynthesis by LonA. They found that the adaptor protein SmiA is required for the productive degradation of SwrA by LonA. This regulatory mechanism is important to prevent hyperflagellation in liquid media.
    • Relevant SubtiWiki pages: LonA, SwrA, SmiA, proteolysis, Daniel Kearns


  • December 2014
    • Cell division is facilitated by a molecular machine - the divisome - that assembles at mid-cell in dividing cells. The formation of the cytokinetic Z-ring by FtsZ is regulated by several factors, including the divisome component EzrA. Cleverley et al. now describe the structure of the cytoplasmic domain of EzrA which comprises five linear repeats of an unusual triple helical bundle. The EzrA structure is bent into a semicircle, providing the protein with the potential to interact at both N- and C-termini with adjacent membrane-bound divisome components. The individual repeats, and their linear organization, are homologous to the spectrin proteins that connect actin filaments to the membrane in eukaryotes, and EzrA is proposed to be the founding member of the bacterial spectrin family.
    • Relevant SubtiWiki pages: EzrA, FtsZ, divisome, cell division, Rick Lewis

  • November 2014
    • Integration of prophages into coding sequences of the host genome results in loss of function of the interrupted gene. In B. subtilis 168, the SP-beta prophage is inserted into a uncharacterized spore polysaccharide synthesis gene, spsM. In vegetative cells, the lytic cycle is induced in response to DNA damage. In the process, the SP-beta prophage is excised from the genome to form phage particles. Now, Abe et al. demonstrate that the excision of the SP-beta prophage also occurs systematically during sporulation to reconstitute a functional spsM gene from the incomplete yodU and ypqP pseudogenes. Because phage excision is limited to the mother cell genome, and does not occur in the forespore genome, the SP-beta prophage is an integral part of the spore genome. Thus, after germination, the SP-beta prophage is propagated vertically to the progeny. The authors suggest their results indicate that the two pathways of SP-beta prophage excision support both the phage life cycle and normal sporulation of the host cells.
    • Relevant SubtiWiki pages: SP-beta prophage, sporulation, yodU, ypqP, SprA, SprB

    • See also:

  • October 2014
    • Drug exporters help the bacterial cell to cope with potentially toxic compounds. The expression of the transporters is usually switched on in response to the transported drugs. Reilman et al. have studied the regulation of the BmrC/BmrD multidrug ABC transporter in B. subtilis. They report that the induction of bmrC-bmrD depends on the translation of a small leader peptide, BmrB. This is the first report on a ribosome-mediated transcriptional attenuation mechanism in the control of a multidrug ABC transporter.
    • Relevant SubtiWiki pages: BmrB, ABC transporter, bmrC-bmrD, AbrB

  • August 2014
    • Calcium is important for the activity of many many enzymes, and its cellular homeostasis is therefore important. Now, the previously unknown YetJ protein has been identified as a pH-sensitive calcium leak that allows reducing the inracellular calcium concentration. Chang et al. report the structure of YetJ and explain how two conserved Asp residues sense changes in the pH.
    • Relevant SubtiWiki pages: Metal ion homeostasis (K, Na, Ca, Mg), YetJ

  • July 2014
    • T-boxes are regulatory mRNA elements which sense amino acid availability and control the expression of genes encoding aminoacyl-tRNA synthetases and biosynthetic enzymes. Sensing is thought to occur by the interaction of the uncharged tRNA with the T-box thus preventing the formation of a transcription terminator. It has however, not been known whether this regulation involves proteins. Now, Zhang and Ferre-D'Amare show that the B. subtilis glyQ-glyS T-box functions independently of any tRNA-binding protein. They demonstrate that the T-box detects the molecular volume of tRNA 3'-substituents.
    • Relevant SubtiWiki pages: T-box, glyQ

  • June 2014
    • Transcription by RNA polymerase is interrupted by pauses that play diverse regulatory roles. However, the determinants of pauses in vivo and their distribution throughout the bacterial genome remain unknown. Using nascent transcript sequencing, Larson et al. identified a 16-nucleotide consensus pause sequence. The pauses result from RNA polymerase-nucleic acid interactions that inhibit next-nucleotide addition. The consensus sequence is enriched at translation start sites in Bacillus subtilis.
    • Relevant SubtiWiki pages: RNA polymerase, transcription, translation

  • See a comment on this issue:


  • November 2013
    • Cyclic di-AMP is an essential second messenger in B. subtilis and other Gram-positive bacteria. This molecule has been discovered only in 2008, and a lot of work has recently been devoted to the investigation of its function. This month, Nelson et al. from the lab of Ronald Breaker discovered that c-di-AMP binds to the ydaO riboswitch. This is extremely interesting since the molecule does also bind the KtrA potassium transporter. The ktrA-ktrB operon is also controlled by a ydaO riboswitch. Thus c-di-AMP is the first signalling nucleotide that controls a biological process by binding both a protein and the encoding mRNA.
    • Relevant SubtiWiki pages: Ronald Breaker, ydaO riboswitch, KtrA, ydaO, metabolism of signalling nucleotides

    • Additional papers on c-di-AMP from 2013

  • September 2013
    • Biofilms of B. subtilis consist of cells in a matrix made up of extracellular polysaccharides, the amyloid-like TasA protein, and the hydrophobic protein BslA. Now, Hobley et al. from the lab of Nicola Stanley-Wall determined the structure of BslA and found that the protein has an extremely hydrophobic cap domain that acts like a raincoat for the biofilm. The authors suggest that BslA is a bacterial hydrophobin.
    • Relevant SubtiWiki pages: Nicola Stanley-Wall, biofilm formation, BslA

    • A comment on this paper:

  • August 2013
    • In cells, the concentration of ribonucleotides by far exceeds that of deoxyribonucleotides. This poses problems since the DNA polymerase incorporates one rNTP every 2.3 kb during chromosome replication. Now, Yao et al. investigated how these misincorporations are repaired. They demonstrate that this repair is initiated by RNase HII that nicks DNA at single rNMP residues to initiate replacement with dNMPs.
    • Relevant SubtiWiki pages: DNA replication, DNA repair, rnhB, rnhC, mutS, mutL

  • July 2013
    • Ca2+ efflux by Ca2+ cation antiporter (CaCA) proteins is important for maintenance of Ca2+ homeostasis across the cell membrane. Now, Wu et al. determined the structure of the B. subtilis Ca2+/H+ antiporter protein ChaA. By structural and mutational analyses, they establish structural bases for mechanisms of Ca2+/H+ exchange and its pH regulation. Moreover, this work also sheds light on the evolutionary adaptation to different energy modes in the CaCA protein family.
    • Relevant SubtiWiki pages: ChaA, membrane proteins, metal ion homeostasis (K, Na, Ca, Mg)

  • June 2013
    • DNA transfer across membranes is important in many fundamental processes. However, the molecular mechanisms behind this transport are only poorly understood. Now, Fiche et al. analysed the assembly and molecular architecture of the SpoIIIE DNA translocation complex. This study reveals that in contrast to a previous model, DNA transfer occurs through an aqueous DNA-conducting pore that could be structurally maintained by the divisional machinery, with SpoIIIE acting as a checkpoint preventing membrane fusion until completion of chromosome segregation.
    • Relevant SubtiWiki pages: sporulation, SpoIIIE, DNA condensation/ segregation

  • May 2013
    • Paul et al. demonstrate that the orientation of the genes on the chromosome has a significant impact on their evolution: Gene encoded on the lagging strand evolve faster than those on the leading strand. This faster evolution is caused by collisions between the DNA replication and transcription machineries that result in DNA damage and subsequent fixation of errors as mutations. Importantly, essential genes are strongly underrepresented on the lagging strand thus providing a "built-in" protection of the encoded important proteins against possible deleterious mutations.
    • Relevant SubtiWiki pages: transcription, DNA replication, essential genes

Sandip Paul, Samuel Million-Weaver, Sujay Chattopadhyay, Evgeni Sokurenko, Houra Merrikh
Accelerated gene evolution through replication-transcription conflicts.
Nature: 2013, 495(7442);512-5
[PubMed:23538833] [] [DOI] (I p)

Romain Mercier, Yoshikazu Kawai, Jeff Errington
Excess membrane synthesis drives a primitive mode of cell proliferation.
Cell: 2013, 152(5);997-1007
[PubMed:23452849] [] [DOI] (I p)

  • March 2013
    • The mechanism of membrane fission in bacteria has been a long-standing enigma. Now, Doan et al. from the lab of David Rudner demonstrate how the FisB protein (previously YunB) mediates membrane fission during sporulation This activity of FisB is based on its ability to bind to lipids, specifically to cardiolipin.
    • Relevant SubtiWiki pages: David Rudner, FisB, sporulation

Thierry Doan, Jeff Coleman, Kathleen A Marquis, Alex J Meeske, Briana M Burton, Erdem Karatekin, David Z Rudner
FisB mediates membrane fission during sporulation in Bacillus subtilis.
Genes Dev.: 2013, 27(3);322-34
[PubMed:23388828] [] [DOI] (I p)

  • See also:

Irene S Tan, Kumaran S Ramamurthi
Membrane remodeling: FisB will do in a pinch.
Curr. Biol.: 2013, 23(6);R251-3
[PubMed:23518060] [] [DOI] (I p)

Sylvain Durand, Laetitia Gilet, Ciarán Condon
The essential function of B. subtilis RNase III is to silence foreign toxin genes.
PLoS Genet.: 2012, 8(12);e1003181
[PubMed:23300471] [] [DOI] (I p)

  • A comment on this paper:

Fabian M Commichau, Jörg Stülke
A mystery unraveled: essentiality of RNase III in Bacillus subtilis is caused by resident prophages.
PLoS Genet.: 2012, 8(12);e1003199
[PubMed:23300472] [] [DOI] (I p)

  • See also:

Sylvain Durand, Natalie Jahn, Ciarán Condon, Sabine Brantl
Type I toxin-antitoxin systems in Bacillus subtilis.
RNA Biol: 2012, 9(12);1491-7
[PubMed:23059907] [] [DOI] (I p)

Jean-Philippe Castaing, Attila Nagy, Vivek Anantharaman, L Aravind, Kumaran S Ramamurthi
ATP hydrolysis by a domain related to translation factor GTPases drives polymerization of a static bacterial morphogenetic protein.
Proc. Natl. Acad. Sci. U.S.A.: 2013, 110(2);E151-60
[PubMed:23267091] [] [DOI] (I p)


  • December 2012
    • Kim et al. show how the ATP hydrolysis controls the global conformation of the SecA translocase and drives protein secretion. The intricate network of structural interactions, which couple local electrostatic changes during ATP hydrolysis to global conformational and dynamic changes in SecA, form the foundation of the allosteric mechanochemistry that efficiently harnesses the chemical energy stored in ATP to drive complex mechanical processes.
    • Relevant SubtiWiki pages: SecA, protein secretion

Dorothy M Kim, Haiyan Zheng, Yuanpeng J Huang, Gaetano T Montelione, John F Hunt
ATPase active-site electrostatic interactions control the global conformation of the 100 kDa SecA translocase.
J. Am. Chem. Soc.: 2013, 135(8);2999-3010
[PubMed:23167435] [] [DOI] (I p)

Peter Y Watson, Martha J Fedor
The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis.
Nat. Chem. Biol.: 2012, 8(12);963-5
[PubMed:23086297] [] [DOI] (I p)

Germán Plata, Tobias Fuhrer, Tzu-Lin Hsiao, Uwe Sauer, Dennis Vitkup
Global probabilistic annotation of metabolic networks enables enzyme discovery.
Nat. Chem. Biol.: 2012, 8(10);848-54
[PubMed:22960854] [] [DOI] (I p)

Shinobu Chiba, Koreaki Ito
Multisite ribosomal stalling: a unique mode of regulatory nascent chain action revealed for MifM.
Mol. Cell: 2012, 47(6);863-72
[PubMed:22864117] [] [DOI] (I p)

Ali Houry, Michel Gohar, Julien Deschamps, Ekaterina Tischenko, Stéphane Aymerich, Alexandra Gruss, Romain Briandet
Bacterial swimmers that infiltrate and take over the biofilm matrix.
Proc. Natl. Acad. Sci. U.S.A.: 2012, 109(32);13088-93
[PubMed:22773813] [] [DOI] (I p)

Angel E Dago, Alexander Schug, Andrea Procaccini, James A Hoch, Martin Weigt, Hendrik Szurmant
Structural basis of histidine kinase autophosphorylation deduced by integrating genomics, molecular dynamics, and mutagenesis.
Proc. Natl. Acad. Sci. U.S.A.: 2012, 109(26);E1733-42
[PubMed:22670053] [] [DOI] (I p)

Laura Hobley, Sok Ho Kim, Yukari Maezato, Susan Wyllie, Alan H Fairlamb, Nicola R Stanley-Wall, Anthony J Michael
Norspermidine is not a self-produced trigger for biofilm disassembly.
Cell: 2014, 156(4);844-54
[PubMed:24529384] [] [DOI] (I p)

Ilana Kolodkin-Gal, Shugeng Cao, Liraz Chai, Thomas Böttcher, Roberto Kolter, Jon Clardy, Richard Losick
A self-produced trigger for biofilm disassembly that targets exopolysaccharide.
Cell: 2012, 149(3);684-92
[PubMed:22541437] [] [DOI] (I p)

Alexander K W Elsholz, Kürsad Turgay, Stephan Michalik, Bernd Hessling, Katrin Gronau, Dan Oertel, Ulrike Mäder, Jörg Bernhardt, Dörte Becher, Michael Hecker, Ulf Gerth
Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis.
Proc. Natl. Acad. Sci. U.S.A.: 2012, 109(19);7451-6
[PubMed:22517742] [] [DOI] (I p)

Jeffrey Meisner, Tatsuya Maehigashi, Ingemar André, Christine M Dunham, Charles P Moran
Structure of the basal components of a bacterial transporter.
Proc. Natl. Acad. Sci. U.S.A.: 2012, 109(14);5446-51
[PubMed:22431613] [] [DOI] (I p)

Vladimir M Levdikov, Elena V Blagova, Amanda McFeat, Mark J Fogg, Keith S Wilson, Anthony J Wilkinson
Structure of components of an intercellular channel complex in sporulating Bacillus subtilis.
Proc. Natl. Acad. Sci. U.S.A.: 2012, 109(14);5441-5
[PubMed:22431604] [] [DOI] (I p)

  • A comment on these papers:

  • A comment on this paper:


James C W Locke, Jonathan W Young, Michelle Fontes, María Jesús Hernández Jiménez, Michael B Elowitz
Stochastic pulse regulation in bacterial stress response.
Science: 2011, 334(6054);366-9
[PubMed:21979936] [] [DOI] (I p)

Jamie Richards, Quansheng Liu, Olivier Pellegrini, Helena Celesnik, Shiyi Yao, David H Bechhofer, Ciarán Condon, Joel G Belasco
An RNA pyrophosphohydrolase triggers 5'-exonucleolytic degradation of mRNA in Bacillus subtilis.
Mol. Cell: 2011, 43(6);940-9
[PubMed:21925382] [] [DOI] (I p)

Gintaras Deikus, David H Bechhofer
5' End-independent RNase J1 endonuclease cleavage of Bacillus subtilis model RNA.
J. Biol. Chem.: 2011, 286(40);34932-40
[PubMed:21862575] [] [DOI] (I p)

Patrice Bruscella, Karen Shahbabian, Soumaya Laalami, Harald Putzer
RNase Y is responsible for uncoupling the expression of translation factor IF3 from that of the ribosomal proteins L35 and L20 in Bacillus subtilis.
Mol. Microbiol.: 2011, 81(6);1526-41
[PubMed:21843271] [] [DOI] (I p)

Martin Lehnik-Habrink, Marc Schaffer, Ulrike Mäder, Christine Diethmaier, Christina Herzberg, Jörg Stülke
RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y.
Mol. Microbiol.: 2011, 81(6);1459-73
[PubMed:21815947] [] [DOI] (I p)

Martin Lehnik-Habrink, Joseph Newman, Fabian M Rothe, Alexandra S Solovyova, Cecilia Rodrigues, Christina Herzberg, Fabian M Commichau, Richard J Lewis, Jörg Stülke
RNase Y in Bacillus subtilis: a Natively disordered protein that is the functional equivalent of RNase E from Escherichia coli.
J. Bacteriol.: 2011, 193(19);5431-41
[PubMed:21803996] [] [DOI] (I p)

Bui Khanh Chi, Katrin Gronau, Ulrike Mäder, Bernd Hessling, Dörte Becher, Haike Antelmann
S-bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics.
Mol. Cell Proteomics: 2011, 10(11);M111.009506
[PubMed:21749987] [] [DOI] (I p)

Ethan C Garner, Remi Bernard, Wenqin Wang, Xiaowei Zhuang, David Z Rudner, Tim Mitchison
Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis.
Science: 2011, 333(6039);222-5
[PubMed:21636745] [] [DOI] (I p)

Julia Domínguez-Escobar, Arnaud Chastanet, Alvaro H Crevenna, Vincent Fromion, Roland Wedlich-Söldner, Rut Carballido-López
Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.
Science: 2011, 333(6039);225-8
[PubMed:21636744] [] [DOI] (I p)

  • A comment on these papers:

Andrew Jermy
Bacterial physiology: MreB takes a back seat.
Nat. Rev. Microbiol.: 2011, 9(8);560-1
[PubMed:21725336] [] [DOI] (I e)

Yaara Oppenheimer-Shaanan, Ezequiel Wexselblatt, Jehoshua Katzhendler, Eylon Yavin, Sigal Ben-Yehuda
c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis.
EMBO Rep.: 2011, 12(6);594-601
[PubMed:21566650] [] [DOI] (I p)

  • May 2011
    • Miles et al. identified the enzyme for the key final step in the biosynthesis of queuosine, a hypermodified base found in the wobble positions of tRNA Asp, Asn, His, and Tyr from bacteria to man
    • Relevant SubtiWiki pages: QueG, translation

Zachary D Miles, Reid M McCarty, Gabriella Molnar, Vahe Bandarian
Discovery of epoxyqueuosine (oQ) reductase reveals parallels between halorespiration and tRNA modification.
Proc. Natl. Acad. Sci. U.S.A.: 2011, 108(18);7368-72
[PubMed:21502530] [] [DOI] (I p)