Difference between revisions of "Sandbox"

From SubtiWiki
Jump to: navigation, search
Line 1: Line 1:
* '''Description:''' 5S rRNA<br/><br/>
+
* '''Description:''' Glyceraldehyde 3-phosphate dehydrogenase, NAD-dependent, glycolytic enzyme <br/><br/>
  
 
{| align="right" border="1" cellpadding="2"  
 
{| align="right" border="1" cellpadding="2"  
 
|-
 
|-
 
|style="background:#ABCDEF;" align="center"|'''Gene name'''
 
|style="background:#ABCDEF;" align="center"|'''Gene name'''
|''rrnO-5S''
+
|''gapA''
 
|-
 
|-
 
|style="background:#ABCDEF;" align="center"| '''Synonyms''' || '' ''
 
|style="background:#ABCDEF;" align="center"| '''Synonyms''' || '' ''
 
|-
 
|-
|style="background:#ABCDEF;" align="center"| '''Essential''' || no
+
|style="background:#ABCDEF;" align="center"| '''Essential''' || Yes [http://www.ncbi.nlm.nih.gov/sites/entrez/17114254 (PubMed)]
 
|-
 
|-
|style="background:#ABCDEF;" align="center"| '''Product''' || ribosomal RNA-5S
+
|style="background:#ABCDEF;" align="center"| '''Product''' || glyceraldehyde 3-phosphate dehydrogenase
 
|-
 
|-
|style="background:#ABCDEF;" align="center"|'''Function''' ||  
+
|style="background:#ABCDEF;" align="center"|'''Function''' || catabolic enzyme in glycolysis
 
|-
 
|-
|style="background:#ABCDEF;" align="center"| '''MW, pI''' || kDa,  
+
|style="background:#ABCDEF;" align="center"| '''MW, pI''' || 35.7 kDa, 5.03
 
|-
 
|-
|style="background:#ABCDEF;" align="center"| '''Gene length, protein length''' || bp, aa
+
|style="background:#ABCDEF;" align="center"| '''Gene length, protein length''' || 1005 bp, 335 amino acids
 
|-
 
|-
|style="background:#ABCDEF;" align="center"|'''Immediate neighbours''' ||  
+
|style="background:#ABCDEF;" align="center"|'''Immediate neighbours''' || ''[[cggR]]'', ''[[pgk]]''
 
|-
 
|-
|style="background:#FAF8CC;" align="center"|'''[http://subtiwiki.uni-goettingen.de/rrnO-5S_nucleotide.txt    Gene sequence      (+200bp)  ]'''  
+
|style="background:#FAF8CC;" align="center"|'''[http://subtiwiki.uni-goettingen.de/gapA_nucleotide.txt    Gene sequence      (+200bp)  ]'''  
|style="background:#FAF8CC;" align="center"|'''[http://subtiwiki.uni-goettingen.de/rrnO-5S_protein.txt Protein sequence]'''
+
|style="background:#FAF8CC;" align="center"|'''[http://subtiwiki.uni-goettingen.de/gapA_protein.txt Protein sequence]'''
 
|-
 
|-
|colspan="2" | '''Genetic context''' <br/> [[Image:rrnO-5S_context.gif]]
+
|colspan="2" | '''Genetic context''' <br/> [[Image:gapA_context.gif]]
 
|-
 
|-
 
|}
 
|}
Line 31: Line 31:
 
<br/><br/>
 
<br/><br/>
  
 +
 
=The gene=
 
=The gene=
  
 
=== Basic information ===
 
=== Basic information ===
  
* '''Coordinates:'''
+
* '''Coordinates:''' 3480732 - 3481736
  
 
===Phenotypes of a mutant ===
 
===Phenotypes of a mutant ===
 +
 +
essential  [http://www.ncbi.nlm.nih.gov/pubmed/17114254 PubMed]
 +
 +
=== Database entries ===
 +
 +
* '''DBTBS entry:''' [http://dbtbs.hgc.jp/COG/prom/cggR-gapA-pgk-tpiA-pgm-eno.html]
 +
 +
* '''SubtiList entry:'''[http://genolist.pasteur.fr/SubtiList/genome.cgi?gene_detail+BG10827]
 +
 +
=== Additional information===
 +
 +
=The protein=
 +
 +
=== Basic information/ Evolution ===
 +
 +
* '''Catalyzed reaction/ biological activity:''' glyceraldehyde-3-phosphate dehydrogenase, (NADH-dependent). Catalyzes the reaction from glyceraldehyde-3-phosphate to 1.3-bi-phosphoglycerate. This reaction is part of the glycolysis.
 +
 +
* '''Protein family:'''
 +
 +
* '''Paralogous protein(s):''' [[GapB]]
 +
 +
=== Extended information on the protein ===
 +
 +
* '''Kinetic information:''' K(M) for NAD: 5.7 mM, K(cat) for NAD: 70/sec (determined for GapA from ''Geobacillus stearothermophilus'') [http://www.ncbi.nlm.nih.gov/sites/entrez/10799476 PubMed]
 +
 +
* '''Domains:'''
 +
 +
* '''Modification:''' Phosphorylation (STY) [http://www.ncbi.nlm.nih.gov/pubmed/17218307 PubMed]
 +
 +
* '''Cofactor(s):'''
 +
 +
* '''Effectors of protein activity:'''
 +
 +
* '''Interactions:'''
 +
** GapA-[[PtsH]]: [[PtsH|HPr(Ser-46-P)]] binds GapA resulting in a slight inhibition of enzymatic activity.[http://www.ncbi.nlm.nih.gov/sites/entrez/17142398 PubMed]
 +
** GapA-[[Crh]]: [[Crh|Crh(Ser-46-P)]] binds GapA resulting in a slight inhibition of enzymatic activity.[http://www.ncbi.nlm.nih.gov/sites/entrez/17142398 PubMed]
 +
 +
* '''Localization:''' cytoplasm [http://www.ncbi.nlm.nih.gov/sites/entrez/14600241 PubMed] [http://www.ncbi.nlm.nih.gov/sites/entrez/16479537 PubMed], loosely membrane associated[http://www.ncbi.nlm.nih.gov/pubmed/18763711 PubMed]
  
 
=== Database entries ===
 
=== Database entries ===
  
* '''DBTBS entry:''' [http://dbtbs.hgc.jp/COG/prom/rrnO-16S-trnO-Ile-trnO-Ala-rrnO-23S-rrnO-5S.html]
+
* '''Structure:'''  
 +
** [http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=3CMC 3CMC] (from ''Geobacillus stearothermophilus'')
 +
** [http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1NQO 1NQO] (from ''Geobacillus stearothermophilus'', mutant with cys 149 replaced by ser, complex with NAD+ und D-Glyceraldehyde-3-Phosphate)
  
* '''SubtiList entry:''' [http://genolist.pasteur.fr/SubtiList/genome.cgi?gene_detail+BG00009]
+
* '''Swiss prot entry:''' [http://www.expasy.ch/cgi-bin/sprot-search-ac?P09124 P09124]
  
* '''Structure:'''
+
* '''KEGG entry:''' [http://www.genome.jp/dbget-bin/www_bget?bsu:BSU33940 KEGG]
 +
 
 +
* '''E.C. number:''' [http://www.expasy.ch/cgi-bin/get-enzyme-entry?1.2.1.12 1.2.1.12]
  
 
=== Additional information===
 
=== Additional information===
 +
 +
GAP dehydrogenases from different sources (incl. ''Geobacillus stearothermophilus'') were shown to cleave RNA ([http://www.ncbi.nlm.nih.gov/sites/entrez/12359717 PubMed]). Moreover, mutations in ''gapA'' from ''B. subtilis'' can suppress mutations in genes involved in DNA replication ([http://www.ncbi.nlm.nih.gov/sites/entrez/17505547 PubMed]).
  
 
=Expression and regulation=
 
=Expression and regulation=
  
* '''Operon:''' ''rrnO'' operon (''[[rrnO-16S]] - [[trnO-Ile]] - [[trnO-Ala]] -[[rrnO-23S]] - [[rrnO-5S]]'') [http://www.ncbi.nlm.nih.gov/sites/entrez/6312418 PubMed]
+
* '''Operon:'''  
 +
** ''[[cggR]]-[[gapA]]-[[pgk]]-[[tpi]]-[[pgm]]-[[eno]]''
 +
** ''[[cggR]]-[[gapA]]''
 +
 
 +
The primary mRNAs of the operon are highly unstable. The primary mRNA is subject to processing at the very end of the ''[[cggR]]'' open reading frame. This results in stable mature ''[[gapA]]'' and ''[[gapA]]-[[pgk]]-[[tpiA]]-[[pgm]]-[[eno]]'' mRNAs. The processing event requires the [[Rny]] protein.
 +
 
 +
* '''Sigma factor:''' [[SigA]]  
  
* '''Sigma factor:''' SigA [http://www.ncbi.nlm.nih.gov/sites/entrez/6312418 PubMed]
+
* '''Regulation:''' [[CggR]] represses the operon in the absence of glycolytic sugars [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=+12622823 PubMed]
  
* '''Regulation:'''  
+
* '''Regulatory mechanism:''' repression
  
* '''Regulatory mechanism:'''  
+
* '''Database entries:''' [http://dbtbs.hgc.jp/COG/prom/cggR-gapA-pgk-tpiA-pgm-eno.html DBTBS]
  
* '''Additional information:'''
+
* '''Additional information:''' GapA is one of the most abundant proteins in the cell. In the presence of glucose, there are about 25,000 GapA molecules per cell ([http://www.ncbi.nlm.nih.gov/sites/entrez/12634343 PubMed]).
  
 
=Biological materials =
 
=Biological materials =
  
* '''Mutant:'''
+
* '''Mutant:''' essential
  
* '''Expression vector:'''
+
* '''Expression vector:''' pGP90 (N-terminal Strep-tag, purification from ''B. subtilis'', in [[pGP380]]), pGP704 (N-terminal His-tag, in [[pWH844]]) (available in [[Stülke]] lab)
       
+
* '''lacZ fusion:'''
+
* '''lacZ fusion:''' pGP506 (in [[pAC7]]), pGP512 (in [[pAC6]]) (available in [[Stülke]] lab)
  
 
* '''GFP fusion:'''
 
* '''GFP fusion:'''
  
* '''two-hybrid system:'''  
+
* '''two-hybrid system:''' ''B. pertussis'' adenylate cyclase-based bacterial two hybrid system ([[BACTH]]), available in [[Stülke]] lab
  
* '''Antibody:'''
+
* '''Antibody:''' available in [[Stülke]] lab
  
 
=Labs working on this gene/protein=
 
=Labs working on this gene/protein=
 +
 +
[[Stephane Aymerich |Stephane Aymerich]], Microbiology and Molecular Genetics, INRA Paris-Grignon, France
 +
 +
[[Stülke|Jörg Stülke]], University of Göttingen, Germany
 +
[http://wwwuser.gwdg.de/~genmibio/stuelke.html homepage]
  
 
=Your additional remarks=
 
=Your additional remarks=
Line 81: Line 137:
 
=References=
 
=References=
  
# Ogasawara et al. (1983) Structure and organization of rRNA operons in the region of the replication origin of the ''Bacillus subtilis'' chromosome.''Nucl. Acids Res.'' '''11:''' 6301-6318. [http://www.ncbi.nlm.nih.gov/sites/entrez/6312418 PubMed]
+
# Blencke, H.-M., Homuth, G., Ludwig, H., Mäder, U., Hecker, M. & Stülke, J. (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Engn. 5: 133-149. [http://www.ncbi.nlm.nih.gov/sites/entrez/12850135 PubMed]
 +
# Commichau, F. M., Rothe, F. M., Herzberg, C., Wagner, E., Hellwig, D., Lehnik-Habrink, M., Hammer, E., Völker, U. & Stülke, J. Novel activities of glycolytic enzymes in Bacillus subtilis: Interactions with essential proteins involved in mRNA processing. subm.
 +
# Doan, T., and S. Aymerich. 2003. Regulation of the central glycolytic pathways in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol. Microbiol. 47: 1709-1721. [http://www.ncbi.nlm.nih.gov/sites/entrez/12622823 PubMed]
 +
# Evguenieva-Hackenberg, E., Schiltz, E., and Klug, G. (2002) Dehydrogenases from all three domains of life cleave RNA. J Biol Chem 277, 46145-46150. [http://www.ncbi.nlm.nih.gov/sites/entrez/12359717 PubMed]
 +
# Fillinger, S., Boschi-Muller, S., Azza, S., Dervyn, E., Branlant, G., and Aymerich, S. (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275, 14031-14037. [http://www.ncbi.nlm.nih.gov/sites/entrez/10799476 PubMed]
 +
# Jannière, L., Canceill, D., Suski, C., Kanga, S., Dalmais, B., Lestini, R., Monnier, A. F., Chapuis, J., Bolotin, A., Titok, M., Le Chatelier, E., and Ehrlich, S. D. (2007) Genetic evidence for a link between glycolysis and DNA replication. PLoS ONE 2, e447. [http://www.ncbi.nlm.nih.gov/sites/entrez/17505547 PubMed]
 +
# Ludwig, H., Homuth, G., Schmalisch, M., Dyka, F. M., Hecker, M., and Stülke, J. (2001) Transcription of glycolytic genes and operons in ''Bacillus subtilis'': evidence for the presence of multiple levels of control of the ''gapA'' operon. Mol Microbiol 41, 409-422.[http://www.ncbi.nlm.nih.gov/sites/entrez/11489127 PubMed]
 +
# Ludwig, H., Rebhan, N., Blencke, H.-M., Merzbacher, M. & Stülke, J. (2002). Control of the glycolytic ''gapA'' operon by the catabolite control protein A in ''Bacillus subtilis'': a novel mechanism of CcpA-mediated regulation. Mol Microbiol 45, 543-553.[http://www.ncbi.nlm.nih.gov/sites/entrez/12123463 PubMed]
 +
# Macek et al. (2007) The serine/ threonine/ tyrosine phosphoproteome of the model  bacterium ''Bacillus subtilis''. Mol. Cell. Proteomics 6: 697-707  [http://www.ncbi.nlm.nih.gov/pubmed/17218307 PubMed]
 +
# Meinken, C., Blencke, H. M., Ludwig, H., and Stülke, J. (2003) Expression of the glycolytic ''gapA'' operon in ''Bacillus subtilis'': differential synthesis of proteins encoded by the operon. Microbiology 149, 751-761. [http://www.ncbi.nlm.nih.gov/sites/entrez/12634343 PubMed]
 +
# Pompeo ''et al.'' (2007) Interaction of GapA with HPr and its homologue, Crh: Novel levels of regulation of a key step of glycolysis in ''Bacillus subtilis''? J Bacteriol 189, 1154-1157.[http://www.ncbi.nlm.nih.gov/sites/entrez/17142398 PubMed]
 +
# Thomaides, H. B., Davison, E. J., Burston, L., Johnson, H., Brown, D. R., Hunt, A. C., Errington, J., and Czaplewski, L. (2007) Essential bacterial functions encoded by gene pairs. J Bacteriol 189, 591-602. [http://www.ncbi.nlm.nih.gov/sites/entrez/17114254 PubMed]
 +
# Tobisch, S., Zühlke, D., Bernhardt, J., Stülke, J., and Hecker, M. (1999) Role of CcpA in regulation of the central pathways of carbon catabolism in ''Bacillus subtilis''. J Bacteriol 181, 6996-7004.[http://www.ncbi.nlm.nih.gov/sites/entrez/10559165 PubMed]

Revision as of 15:31, 11 February 2009

  • Description: Glyceraldehyde 3-phosphate dehydrogenase, NAD-dependent, glycolytic enzyme

Gene name gapA
Synonyms
Essential Yes (PubMed)
Product glyceraldehyde 3-phosphate dehydrogenase
Function catabolic enzyme in glycolysis
MW, pI 35.7 kDa, 5.03
Gene length, protein length 1005 bp, 335 amino acids
Immediate neighbours cggR, pgk
Gene sequence (+200bp) Protein sequence
Genetic context
GapA context.gif




The gene

Basic information

  • Coordinates: 3480732 - 3481736

Phenotypes of a mutant

essential PubMed

Database entries

  • DBTBS entry: [1]
  • SubtiList entry:[2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: glyceraldehyde-3-phosphate dehydrogenase, (NADH-dependent). Catalyzes the reaction from glyceraldehyde-3-phosphate to 1.3-bi-phosphoglycerate. This reaction is part of the glycolysis.
  • Protein family:
  • Paralogous protein(s): GapB

Extended information on the protein

  • Kinetic information: K(M) for NAD: 5.7 mM, K(cat) for NAD: 70/sec (determined for GapA from Geobacillus stearothermophilus) PubMed
  • Domains:
  • Modification: Phosphorylation (STY) PubMed
  • Cofactor(s):
  • Effectors of protein activity:

Database entries

  • Structure:
    • 3CMC (from Geobacillus stearothermophilus)
    • 1NQO (from Geobacillus stearothermophilus, mutant with cys 149 replaced by ser, complex with NAD+ und D-Glyceraldehyde-3-Phosphate)

Additional information

GAP dehydrogenases from different sources (incl. Geobacillus stearothermophilus) were shown to cleave RNA (PubMed). Moreover, mutations in gapA from B. subtilis can suppress mutations in genes involved in DNA replication (PubMed).

Expression and regulation

The primary mRNAs of the operon are highly unstable. The primary mRNA is subject to processing at the very end of the cggR open reading frame. This results in stable mature gapA and gapA-pgk-tpiA-pgm-eno mRNAs. The processing event requires the Rny protein.

  • Sigma factor: SigA
  • Regulation: CggR represses the operon in the absence of glycolytic sugars PubMed
  • Regulatory mechanism: repression
  • Additional information: GapA is one of the most abundant proteins in the cell. In the presence of glucose, there are about 25,000 GapA molecules per cell (PubMed).

Biological materials

  • Mutant: essential
  • Expression vector: pGP90 (N-terminal Strep-tag, purification from B. subtilis, in pGP380), pGP704 (N-terminal His-tag, in pWH844) (available in Stülke lab)
  • lacZ fusion: pGP506 (in pAC7), pGP512 (in pAC6) (available in Stülke lab)
  • GFP fusion:
  • two-hybrid system: B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH), available in Stülke lab
  • Antibody: available in Stülke lab

Labs working on this gene/protein

Stephane Aymerich, Microbiology and Molecular Genetics, INRA Paris-Grignon, France

Jörg Stülke, University of Göttingen, Germany homepage

Your additional remarks

References

  1. Blencke, H.-M., Homuth, G., Ludwig, H., Mäder, U., Hecker, M. & Stülke, J. (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Engn. 5: 133-149. PubMed
  2. Commichau, F. M., Rothe, F. M., Herzberg, C., Wagner, E., Hellwig, D., Lehnik-Habrink, M., Hammer, E., Völker, U. & Stülke, J. Novel activities of glycolytic enzymes in Bacillus subtilis: Interactions with essential proteins involved in mRNA processing. subm.
  3. Doan, T., and S. Aymerich. 2003. Regulation of the central glycolytic pathways in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol. Microbiol. 47: 1709-1721. PubMed
  4. Evguenieva-Hackenberg, E., Schiltz, E., and Klug, G. (2002) Dehydrogenases from all three domains of life cleave RNA. J Biol Chem 277, 46145-46150. PubMed
  5. Fillinger, S., Boschi-Muller, S., Azza, S., Dervyn, E., Branlant, G., and Aymerich, S. (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275, 14031-14037. PubMed
  6. Jannière, L., Canceill, D., Suski, C., Kanga, S., Dalmais, B., Lestini, R., Monnier, A. F., Chapuis, J., Bolotin, A., Titok, M., Le Chatelier, E., and Ehrlich, S. D. (2007) Genetic evidence for a link between glycolysis and DNA replication. PLoS ONE 2, e447. PubMed
  7. Ludwig, H., Homuth, G., Schmalisch, M., Dyka, F. M., Hecker, M., and Stülke, J. (2001) Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41, 409-422.PubMed
  8. Ludwig, H., Rebhan, N., Blencke, H.-M., Merzbacher, M. & Stülke, J. (2002). Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Mol Microbiol 45, 543-553.PubMed
  9. Macek et al. (2007) The serine/ threonine/ tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol. Cell. Proteomics 6: 697-707 PubMed
  10. Meinken, C., Blencke, H. M., Ludwig, H., and Stülke, J. (2003) Expression of the glycolytic gapA operon in Bacillus subtilis: differential synthesis of proteins encoded by the operon. Microbiology 149, 751-761. PubMed
  11. Pompeo et al. (2007) Interaction of GapA with HPr and its homologue, Crh: Novel levels of regulation of a key step of glycolysis in Bacillus subtilis? J Bacteriol 189, 1154-1157.PubMed
  12. Thomaides, H. B., Davison, E. J., Burston, L., Johnson, H., Brown, D. R., Hunt, A. C., Errington, J., and Czaplewski, L. (2007) Essential bacterial functions encoded by gene pairs. J Bacteriol 189, 591-602. PubMed
  13. Tobisch, S., Zühlke, D., Bernhardt, J., Stülke, J., and Hecker, M. (1999) Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J Bacteriol 181, 6996-7004.PubMed