Difference between revisions of "PtsH"

From SubtiWiki
Jump to: navigation, search
(References)
Line 125: Line 125:
 
# Müller W, Horstmann N, Hillen W (2006) The transcription regulator RbsR represents a novel interaction partner of the phosphoprotein HPr-Ser46-P in Bacillus subtilis ''FEBS J.'' '''273(6):''' 1251-61. [http://www.ncbi.nlm.nih.gov/sites/entrez/16519689 PubMed]
 
# Müller W, Horstmann N, Hillen W (2006) The transcription regulator RbsR represents a novel interaction partner of the phosphoprotein HPr-Ser46-P in Bacillus subtilis ''FEBS J.'' '''273(6):''' 1251-61. [http://www.ncbi.nlm.nih.gov/sites/entrez/16519689 PubMed]
 
# Pompeo ''et al.'' (2007) Interaction of GapA with HPr and its homologue, Crh: Novel levels of regulation of a key step of glycolysis in ''Bacillus subtilis''? J Bacteriol 189, 1154-1157.[http://www.ncbi.nlm.nih.gov/sites/entrez/17142398 PubMed]
 
# Pompeo ''et al.'' (2007) Interaction of GapA with HPr and its homologue, Crh: Novel levels of regulation of a key step of glycolysis in ''Bacillus subtilis''? J Bacteriol 189, 1154-1157.[http://www.ncbi.nlm.nih.gov/sites/entrez/17142398 PubMed]
 
+
1. Arnaud M, Vary P, Zagorec M, Klier A, Débarbouillé M, Postma P, Rapoport G (1992) Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity. J Bacteriol 174:3161-3170
+
# Arnaud M, Vary P, Zagorec M, Klier A, Débarbouillé M, Postma P, Rapoport G (1992) Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity. J Bacteriol 174:3161-3170. [http://www.ncbi.nlm.nih.gov/sites/entrez/1577686 PubMed]
2. Deutscher, J., Kessler, U., Alpert, C. A., and Hengstenberg, W. (1984) Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-ser-HPr and its possible regulatory function. Biochemistry 23: 4455-4460.
+
# Deutscher, J., Kessler, U., Alpert, C. A., and Hengstenberg, W. (1984) Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-ser-HPr and its possible regulatory function. Biochemistry 23: 4455-4460. [http://www.ncbi.nlm.nih.gov/sites/entrez/ PubMed "Not identified yet"]
3. Deutscher, J., Küster, E., Bergstedt, U., Charrier, V., and Hillen, W. 1995. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol. Microbiol. 15: 1049-1053.
+
# Deutscher, J., Küster, E., Bergstedt, U., Charrier, V., and Hillen, W. (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol. Microbiol. 15: 1049-1053. [http://www.ncbi.nlm.nih.gov/sites/entrez/7623661  PubMed]
4. Eisermann, R., Deutscher, J., Gonzy-Tréboul, G., and Hengstenberg, W. (1988) Site-directed mutagenesis with the ptsH gene of Bacillus subtilis. J Biol Chem 263: 17050-17054.
+
# Eisermann, R., Deutscher, J., Gonzy-Tréboul, G., and Hengstenberg, W. (1988) Site-directed mutagenesis with the ptsH gene of Bacillus subtilis. J Biol Chem 263: 17050-17054. [http://www.ncbi.nlm.nih.gov/sites/entrez/2846556  PubMed]
5. Frisby, D., and Zuber, P. 1994. Mutations in pts cause catabolite-resistant sporulation and altered regulation of spo0H in Bacillus subtilis. J. Bacteriol. 176: 2587-2595.
+
# Frisby, D., and Zuber, P. 1994. Mutations in pts cause catabolite-resistant sporulation and altered regulation of spo0H in Bacillus subtilis. J. Bacteriol. 176: 2587-2595. [http://www.ncbi.nlm.nih.gov/sites/entrez/8169206  PubMed]
6. Galinier A, Deutscher J, Martin-Verstraete I: Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. J Mol Biol 1999, 286:307-314.
+
# Galinier A, Deutscher J, Martin-Verstraete I: (1999) Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. J Mol Biol , 286:307-314. [http://www.ncbi.nlm.nih.gov/sites/entrez/9973552  PubMed]
7. Görke, B., Fraysse, L. & Galinier, A. Drastic differences in Crh and HPr synthesis levels reflect their different impacts on catabolite repression in Bacillus subtilis. J. Bacteriol. 186, 2992-2995 (2004).
+
# Görke, B., Fraysse, L. & Galinier, A. (2004) Drastic differences in Crh and HPr synthesis levels reflect their different impacts on catabolite repression in Bacillus subtilis. J. Bacteriol. 186, 2992-2995 . [http://www.ncbi.nlm.nih.gov/sites/entrez/15126459  PubMed]
8. Lindner, C., Galinier, A., Hecker, M. & Deutscher, J. Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme I- and HPr-catalysed phosphorylation. Mol. Microbiol. 31, 995-1006 (1999).
+
# Lindner, C., Galinier, A., Hecker, M. & Deutscher, J. (1999) Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme I- and HPr-catalysed phosphorylation. Mol. Microbiol. 31, 995-1006 . [http://www.ncbi.nlm.nih.gov/sites/entrez/10048041  PubMed]
9. Lindner, C., Hecker, M., Le Coq, D. & Deutscher, J. Bacillus subtilis mutant LicT antiterminators exhibiting enzyme I- and HPr-independent antitermination affect catabolite repression of the bglPH operon. J. Bacteriol. 184, 4819-4828 (2002).
+
# Lindner, C., Hecker, M., Le Coq, D. & Deutscher, J. (2002) Bacillus subtilis mutant LicT antiterminators exhibiting enzyme I- and HPr-independent antitermination affect catabolite repression of the bglPH operon. J. Bacteriol. 184, 4819-4828 . [http://www.ncbi.nlm.nih.gov/sites/entrez/12169607  PubMed]
10. Martin-Verstraete, I., Charrier, V., Stülke, J., Galinier, A., Erni, B., Rapoport, G., & Deutscher, J. (1998) Antagonistic effects of dual PTS catalyzed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol. Microbiol. 28: 293-303.
+
# Martin-Verstraete, I., Charrier, V., Stülke, J., Galinier, A., Erni, B., Rapoport, G., & Deutscher, J. (1998) Antagonistic effects of dual PTS catalyzed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol. Microbiol. 28: 293-303. [http://www.ncbi.nlm.nih.gov/sites/entrez/9622354  PubMed]
11. Martin-Verstraete, I., Deutscher, J., and Galinier, A. (1999) Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. J Bacteriol 181: 2966-2969.
+
# Martin-Verstraete, I., Deutscher, J., and Galinier, A. (1999) Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. J Bacteriol 181: 2966-2969. [http://www.ncbi.nlm.nih.gov/sites/entrez/10217795  PubMed]
12. Reizer, J., Sutrina, S. L., Saier, Jr., M. H., Stewart, G. C., Peterkofsky, A., and Reddy, P. (1989) Mechanistic and physiological consequences of HPr(Ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in Gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J 8: 2111-2120.
+
# Reizer, J., Sutrina, S. L., Saier, Jr., M. H., Stewart, G. C., Peterkofsky, A., and Reddy, P. (1989) Mechanistic and physiological consequences of HPr(Ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in Gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J 8: 2111-2120. [http://www.ncbi.nlm.nih.gov/sites/entrez/2507315  PubMed]
13. Schmalisch, M., Bachem, S. & Stülke, J. (2003) Control of the Bacillus subtilis antiterminator protein GlcT by phosphorylation: Elucidation of the phosphorylation chain leading to inactivation of GlcT. J. Biol. Chem. 278: 51108-51115.
+
# Schmalisch, M., Bachem, S. & Stülke, J. (2003) Control of the Bacillus subtilis antiterminator protein GlcT by phosphorylation: Elucidation of the phosphorylation chain leading to inactivation of GlcT. J. Biol. Chem. 278: 51108-51115. [http://www.ncbi.nlm.nih.gov/sites/entrez/14527945  PubMed]
14. Schumacher, M. A. et al. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell 118, 731-741 (2004).
+
# Schumacher, M. A. et al. (2004) Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell 118, 731-741 . [http://www.ncbi.nlm.nih.gov/sites/entrez/15369672  PubMed]
15. Singh, K. D., Halbedel, S., Görke, B. & Stülke, J. (2007) Control of the phosphorylation state of the HPr protein of the phosphotransferase system in Bacillus subtilis: implication of the protein phosphatase PrpC. J. Mol. Microbiol. Biotechnol. 13: 165-171.
+
# Singh, K. D., Halbedel, S., Görke, B. & Stülke, J. (2007) Control of the phosphorylation state of the HPr protein of the phosphotransferase system in Bacillus subtilis: implication of the protein phosphatase PrpC. J. Mol. Microbiol. Biotechnol. 13: 165-171. [http://www.ncbi.nlm.nih.gov/sites/entrez/17693724  PubMed]
16. Singh, K. D., Schmalisch, M. H., Stülke, J. & Görke, B. (2008) Carbon catabolite repression in Bacillus subtilis: A quantitative analysis of repression exerted by different carbon sources. J. Bacteriol. 190: 7275-7284.
+
# Singh, K. D., Schmalisch, M. H., Stülke, J. & Görke, B. (2008) Carbon catabolite repression in Bacillus subtilis: A quantitative analysis of repression exerted by different carbon sources. J. Bacteriol. 190: 7275-7284. [http://www.ncbi.nlm.nih.gov/sites/entrez/18757537  PubMed]
17. Stülke, J., Martin-Verstraete, I., Charrier, V., Klier, A., Deutscher, J. & Rapoport, G. (1995) The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon. J. Bacteriol. 177: 6928-6936.
+
# Stülke, J., Martin-Verstraete, I., Charrier, V., Klier, A., Deutscher, J. & Rapoport, G. (1995) The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon. J. Bacteriol. 177: 6928-6936. [http://www.ncbi.nlm.nih.gov/sites/entrez/7592487  PubMed]
18. Tortosa, P., Aymerich, S., Lindner, C., Saier, M.H., Jr., Reizer, J. and Le Coq, D. (1997) Multiple phosphorylation of SacY, a Bacillus subtilis antiterminator negatively controlled by the phosphotransferase system. J. Biol. Chem. 272, 17230-17237.
+
# Tortosa, P., Aymerich, S., Lindner, C., Saier, M.H., Jr., Reizer, J. and Le Coq, D. (1997) Multiple phosphorylation of SacY, a Bacillus subtilis antiterminator negatively controlled by the phosphotransferase system. J. Biol. Chem. 272, 17230-17237. [http://www.ncbi.nlm.nih.gov/sites/entrez/9202047  PubMed]

Revision as of 09:11, 14 January 2009

  • Description: HPr, General component of the sugar phosphotransferase system (PTS).

Gene name ptsH
Synonyms
Essential no
Product histidine-containing phosphocarrier protein HPr of the PTS
Function PTS-dependent sugar trnasport and carbon catabolite repression
MW, pI 9,1 kDa, 4.58
Gene length, protein length 264 bp, 88 amino acids
Immediate neighbours ptsG, ptsI
Gene sequence (+200bp) Protein sequence
Genetic context
PtsH context.gif




The gene

Basic information

  • Coordinates: 1458693 - 1458956

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry:[2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: Protein HPr N(pi)-phospho-L-histidine + protein EIIA = protein HPr + protein EIIA N(tau)-phospho-L-histidine
  • Protein family: HPr family
  • Paralogous protein(s): Crh

Extended information on the protein

  • Kinetic information:
  • Domains: HPr Domain (2–88)
  • Modification: phosphorylations: transient phosphorylation by Enzyme I of the PTS on His-15, regulatory phosphorylation on Ser-46 by HprK, weak phosphorylation on Ser-12
  • Cofactor(s):
  • Effectors of protein activity:
  • Localization: Cytoplasm

Database entries

  • Structure: NCBI, complex of L. Casei HprK with B. Subtilis HPr NCBI, complex of L. Casei HprK with B. Subtilis HPr-Ser-P NCBI
  • Swiss prot entry: [3]
  • KEGG entry: [4]
  • E.C. number: [5]

Additional information

Expression and regulation

  • Regulation: induction by glucose (ptsG), constitutive (ptsH)
  • Regulatory mechanism: ptsG: transcriptional antitermination via the GlcT-dependent RNA-switch
  • Additional information:

Biological materials

Labs working on this gene/protein

Josef Deutscher, Paris-Grignon, France

Jörg Stülke, University of Göttingen, Germany Homepage

Wolfgang Hillen, Erlangen University, Germany Homepage

Richard Brennan, Houston, Texas, USA Homepage

Boris Görke, University of Göttingen, Germany Homepage

Anne Galinier, University of Marseille, France

Your additional remarks

References

  1. Macek B, Mijakovic I, Olsen JV (2007) The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol Cell Proteomics 6(4): 697-707. PubMed
  1. Müller W, Horstmann N, Hillen W (2006) The transcription regulator RbsR represents a novel interaction partner of the phosphoprotein HPr-Ser46-P in Bacillus subtilis FEBS J. 273(6): 1251-61. PubMed
  2. Pompeo et al. (2007) Interaction of GapA with HPr and its homologue, Crh: Novel levels of regulation of a key step of glycolysis in Bacillus subtilis? J Bacteriol 189, 1154-1157.PubMed
  1. Arnaud M, Vary P, Zagorec M, Klier A, Débarbouillé M, Postma P, Rapoport G (1992) Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity. J Bacteriol 174:3161-3170. PubMed
  2. Deutscher, J., Kessler, U., Alpert, C. A., and Hengstenberg, W. (1984) Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-ser-HPr and its possible regulatory function. Biochemistry 23: 4455-4460. PubMed "Not identified yet"
  3. Deutscher, J., Küster, E., Bergstedt, U., Charrier, V., and Hillen, W. (1995) Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol. Microbiol. 15: 1049-1053. PubMed
  4. Eisermann, R., Deutscher, J., Gonzy-Tréboul, G., and Hengstenberg, W. (1988) Site-directed mutagenesis with the ptsH gene of Bacillus subtilis. J Biol Chem 263: 17050-17054. PubMed
  5. Frisby, D., and Zuber, P. 1994. Mutations in pts cause catabolite-resistant sporulation and altered regulation of spo0H in Bacillus subtilis. J. Bacteriol. 176: 2587-2595. PubMed
  6. Galinier A, Deutscher J, Martin-Verstraete I: (1999) Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. J Mol Biol , 286:307-314. PubMed
  7. Görke, B., Fraysse, L. & Galinier, A. (2004) Drastic differences in Crh and HPr synthesis levels reflect their different impacts on catabolite repression in Bacillus subtilis. J. Bacteriol. 186, 2992-2995 . PubMed
  8. Lindner, C., Galinier, A., Hecker, M. & Deutscher, J. (1999) Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP-dependent, enzyme I- and HPr-catalysed phosphorylation. Mol. Microbiol. 31, 995-1006 . PubMed
  9. Lindner, C., Hecker, M., Le Coq, D. & Deutscher, J. (2002) Bacillus subtilis mutant LicT antiterminators exhibiting enzyme I- and HPr-independent antitermination affect catabolite repression of the bglPH operon. J. Bacteriol. 184, 4819-4828 . PubMed
  10. Martin-Verstraete, I., Charrier, V., Stülke, J., Galinier, A., Erni, B., Rapoport, G., & Deutscher, J. (1998) Antagonistic effects of dual PTS catalyzed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol. Microbiol. 28: 293-303. PubMed
  11. Martin-Verstraete, I., Deutscher, J., and Galinier, A. (1999) Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon. J Bacteriol 181: 2966-2969. PubMed
  12. Reizer, J., Sutrina, S. L., Saier, Jr., M. H., Stewart, G. C., Peterkofsky, A., and Reddy, P. (1989) Mechanistic and physiological consequences of HPr(Ser) phosphorylation on the activities of the phosphoenolpyruvate:sugar phosphotransferase system in Gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J 8: 2111-2120. PubMed
  13. Schmalisch, M., Bachem, S. & Stülke, J. (2003) Control of the Bacillus subtilis antiterminator protein GlcT by phosphorylation: Elucidation of the phosphorylation chain leading to inactivation of GlcT. J. Biol. Chem. 278: 51108-51115. PubMed
  14. Schumacher, M. A. et al. (2004) Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell 118, 731-741 . PubMed
  15. Singh, K. D., Halbedel, S., Görke, B. & Stülke, J. (2007) Control of the phosphorylation state of the HPr protein of the phosphotransferase system in Bacillus subtilis: implication of the protein phosphatase PrpC. J. Mol. Microbiol. Biotechnol. 13: 165-171. PubMed
  16. Singh, K. D., Schmalisch, M. H., Stülke, J. & Görke, B. (2008) Carbon catabolite repression in Bacillus subtilis: A quantitative analysis of repression exerted by different carbon sources. J. Bacteriol. 190: 7275-7284. PubMed
  17. Stülke, J., Martin-Verstraete, I., Charrier, V., Klier, A., Deutscher, J. & Rapoport, G. (1995) The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon. J. Bacteriol. 177: 6928-6936. PubMed
  18. Tortosa, P., Aymerich, S., Lindner, C., Saier, M.H., Jr., Reizer, J. and Le Coq, D. (1997) Multiple phosphorylation of SacY, a Bacillus subtilis antiterminator negatively controlled by the phosphotransferase system. J. Biol. Chem. 272, 17230-17237. PubMed