Difference between revisions of "MreB"

From SubtiWiki
Jump to: navigation, search
m (Reverted edits by 134.76.70.252 (talk) to last revision by Jstuelk)
Line 49: Line 49:
  
 
* '''Locus tag:''' BSU28030
 
* '''Locus tag:''' BSU28030
 
[http://genome.jouy.inra.fr/cgi-bin/seb/viewdetail.py?id=mreB_2860735_2861748_-1 Expression]
 
  
 
===Phenotypes of a mutant ===
 
===Phenotypes of a mutant ===

Revision as of 11:24, 26 January 2012

  • Description: cell shape-determining protein, forms filaments, the polymers control/restrict the mobility of the cell wall elongation enzyme complex

Gene name mreB
Synonyms divIVB
Essential yes PubMed
Product cell shape-determining protein
Function cell shape determination
Interactions involving this protein in SubtInteract: MreB
MW, pI 35 kDa, 4.901
Gene length, protein length 1011 bp, 337 aa
Immediate neighbours mreC, radC
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
MreB context.gif
This image was kindly provided by SubtiList



Categories containing this gene/protein

cell shape, cell envelope stress proteins (controlled by SigM, V, W, X, Y), essential genes, membrane proteins

This gene is a member of the following regulons

SigM regulon

The gene

Basic information

  • Locus tag: BSU28030

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
    • forms straight filaments in a heterologous system PubMed
    • polymerizes in the presence of millimolar divalent cations, binds and hydrolyzes GTP and ATP PubMed
  • Protein family: ftsA/mreB family (according to Swiss-Prot)

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s):
  • Effectors of protein activity:
  • Localization:
    • during logarithmic growth, MreB forms discrete patches thst move processively along peripheral tracks perpendicular to the cell axis PubMed
    • forms transverse bands as cells enter the stationary phase PubMed
    • close to the inner surface of the cytoplasmic membrane PubMed
    • reports on helical structures formed by MreB PubMed seem to be misinterpretation of data PubMed

Database entries

  • Structure: 1JCE (from Thermotoga maritima) PubMed
  • KEGG entry: [3]
  • E.C. number:

Additional information

Expression and regulation

  • Regulation:
  • Regulatory mechanism:
  • Additional information:

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:

Labs working on this gene/protein

Jeff Errington, Newcastle University, UK homepage

Peter Graumann, Freiburg University, Germany homepage

Your additional remarks

References

Reviews

Additional reviews: PubMed

Sven van Teeffelen, Zemer Gitai
Rotate into shape: MreB and bacterial morphogenesis.
EMBO J: 2011, 30(24);4856-7
[PubMed:22166997] [WorldCat.org] [DOI] (I e)

Andrew Jermy
Bacterial physiology: MreB takes a back seat.
Nat Rev Microbiol: 2011, 9(8);560-1
[PubMed:21725336] [WorldCat.org] [DOI] (I e)

Matthew T Cabeen, Christine Jacobs-Wagner
The bacterial cytoskeleton.
Annu Rev Genet: 2010, 44;365-92
[PubMed:21047262] [WorldCat.org] [DOI] (I p)

Kevin D Young
Bacterial shape: two-dimensional questions and possibilities.
Annu Rev Microbiol: 2010, 64;223-40
[PubMed:20825347] [WorldCat.org] [DOI] (I p)

Peter L Graumann
Cytoskeletal elements in bacteria.
Annu Rev Microbiol: 2007, 61;589-618
[PubMed:17506674] [WorldCat.org] [DOI] (P p)

Rut Carballido-López
The bacterial actin-like cytoskeleton.
Microbiol Mol Biol Rev: 2006, 70(4);888-909
[PubMed:17158703] [WorldCat.org] [DOI] (P p)

Linda A Amos, Fusinita van den Ent, Jan Löwe
Structural/functional homology between the bacterial and eukaryotic cytoskeletons.
Curr Opin Cell Biol: 2004, 16(1);24-31
[PubMed:15037301] [WorldCat.org] [DOI] (P p)


Localization


Other original publications

Additional publications: PubMed