IlvB

From SubtiWiki
Revision as of 14:09, 17 April 2014 by 134.76.70.252 (talk)
Jump to: navigation, search
  • Description: acetolactate synthase (large subunit)

Gene name ilvB
Synonyms
Essential no
Product acetolactate synthase (large subunit)
Function biosynthesis of branched-chain amino acids
Gene expression levels in SubtiExpress: ilvB
Metabolic function and regulation of this protein in SubtiPathways:
ilvB
MW, pI 62 kDa, 5.178
Gene length, protein length 1722 bp, 574 aa
Immediate neighbours ilvH, ysnD
Sequences Protein DNA DNA_with_flanks
Genetic context
IlvB context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
IlvB expression.png















The gene

Basic information

  • Locus tag: BSU28310

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

Categories containing this gene/protein

biosynthesis/ acquisition of amino acids, phosphoproteins

This gene is a member of the following regulons

CodY regulon, CcpA regulon, TnrA regulon, T-box

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: 2 pyruvate = 2-acetolactate + CO2 (according to Swiss-Prot)
  • Protein family: TPP enzyme family (according to Swiss-Prot)

Extended information on the protein

  • Kinetic information:
  • Modification:
    • phosphorylated on Arg-297 PubMed
  • Effectors of protein activity:

Database entries

  • Structure: 1N53 (T box RNA)
  • KEGG entry: [3]

Additional information

  • subject to Clp-dependent proteolysis upon glucose starvation PubMed

Expression and regulation

  • Regulation:
    • for a complete overview on the regulation of the ilv operon, see Brinsmade et al.
    • expression is stimulated in the presence of glucose (CcpA) PubMed
    • repressed under nitrogen limiting conditions (glutamine or ammonium) (TnrA) PubMed
    • repressed by casamino acids PubMed
    • repressed during growth in the presence of branched chain amino acids (CodY) PubMed
  • Additional information: subject to Clp-dependent proteolysis upon glucose starvation PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium): 1230 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, exponential phase): 3316 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, early stationary phase after glucose exhaustion): 1500 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, late stationary phase after glucose exhaustion): 1905 PubMed

Biological materials

  • Mutant: GP324, ilvB under control of pXyl (cat), available in Jörg Stülke's lab
  • Expression vector:
  • lacZ fusion: pGP520 and pGP524 (both in pAC5), pGP523 (in pAC6), all are available in Jörg Stülke's lab
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

Allison Kriel, Shaun R Brinsmade, Jessica L Tse, Ashley K Tehranchi, Alycia N Bittner, Abraham L Sonenshein, Jue D Wang
GTP dysregulation in Bacillus subtilis cells lacking (p)ppGpp results in phenotypic amino acid auxotrophy and failure to adapt to nutrient downshift and regulate biosynthesis genes.
J Bacteriol: 2014, 196(1);189-201
[PubMed:24163341] [WorldCat.org] [DOI] (I p)

Bogumiła C Marciniak, Monika Pabijaniak, Anne de Jong, Robert Dűhring, Gerald Seidel, Wolfgang Hillen, Oscar P Kuipers
High- and low-affinity cre boxes for CcpA binding in Bacillus subtilis revealed by genome-wide analysis.
BMC Genomics: 2012, 13;401
[PubMed:22900538] [WorldCat.org] [DOI] (I e)

Alexander K W Elsholz, Kürsad Turgay, Stephan Michalik, Bernd Hessling, Katrin Gronau, Dan Oertel, Ulrike Mäder, Jörg Bernhardt, Dörte Becher, Michael Hecker, Ulf Gerth
Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis.
Proc Natl Acad Sci U S A: 2012, 109(19);7451-6
[PubMed:22517742] [WorldCat.org] [DOI] (I p)

Ludek Sojka, Tomás Kouba, Ivan Barvík, Hana Sanderová, Zdenka Maderová, Jirí Jonák, Libor Krásny
Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis.
Nucleic Acids Res: 2011, 39(11);4598-611
[PubMed:21303765] [WorldCat.org] [DOI] (I p)

Shaun R Brinsmade, Roelco J Kleijn, Uwe Sauer, Abraham L Sonenshein
Regulation of CodY activity through modulation of intracellular branched-chain amino acid pools.
J Bacteriol: 2010, 192(24);6357-68
[PubMed:20935095] [WorldCat.org] [DOI] (I p)

Ana Gutiérrez-Preciado, Tina M Henkin, Frank J Grundy, Charles Yanofsky, Enrique Merino
Biochemical features and functional implications of the RNA-based T-box regulatory mechanism.
Microbiol Mol Biol Rev: 2009, 73(1);36-61
[PubMed:19258532] [WorldCat.org] [DOI] (I p)

Shigeo Tojo, Takenori Satomura, Kanako Kumamoto, Kazutake Hirooka, Yasutaro Fujita
Molecular mechanisms underlying the positive stringent response of the Bacillus subtilis ilv-leu operon, involved in the biosynthesis of branched-chain amino acids.
J Bacteriol: 2008, 190(18);6134-47
[PubMed:18641142] [WorldCat.org] [DOI] (I p)

Boris R Belitsky, Abraham L Sonenshein
Genetic and biochemical analysis of CodY-binding sites in Bacillus subtilis.
J Bacteriol: 2008, 190(4);1224-36
[PubMed:18083814] [WorldCat.org] [DOI] (I p)

Frank Wiegeshoff, Mohamed A Marahiel
Characterization of a mutation in the acetolactate synthase of Bacillus subtilis that causes a cold-sensitive phenotype.
FEMS Microbiol Lett: 2007, 272(1);30-4
[PubMed:17488331] [WorldCat.org] [DOI] (P p)

Shigeo Tojo, Takenori Satomura, Kaori Morisaki, Josef Deutscher, Kazutake Hirooka, Yasutaro Fujita
Elaborate transcription regulation of the Bacillus subtilis ilv-leu operon involved in the biosynthesis of branched-chain amino acids through global regulators of CcpA, CodY and TnrA.
Mol Microbiol: 2005, 56(6);1560-73
[PubMed:15916606] [WorldCat.org] [DOI] (P p)

Robert P Shivers, Abraham L Sonenshein
Bacillus subtilis ilvB operon: an intersection of global regulons.
Mol Microbiol: 2005, 56(6);1549-59
[PubMed:15916605] [WorldCat.org] [DOI] (P p)

Shigeo Tojo, Takenori Satomura, Kaori Morisaki, Ken-Ichi Yoshida, Kazutake Hirooka, Yasutaro Fujita
Negative transcriptional regulation of the ilv-leu operon for biosynthesis of branched-chain amino acids through the Bacillus subtilis global regulator TnrA.
J Bacteriol: 2004, 186(23);7971-9
[PubMed:15547269] [WorldCat.org] [DOI] (P p)

Ulrike Mäder, Susanne Hennig, Michael Hecker, Georg Homuth
Transcriptional organization and posttranscriptional regulation of the Bacillus subtilis branched-chain amino acid biosynthesis genes.
J Bacteriol: 2004, 186(8);2240-52
[PubMed:15060025] [WorldCat.org] [DOI] (P p)

Virginie Molle, Yoshiko Nakaura, Robert P Shivers, Hirotake Yamaguchi, Richard Losick, Yasutaro Fujita, Abraham L Sonenshein
Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis.
J Bacteriol: 2003, 185(6);1911-22
[PubMed:12618455] [WorldCat.org] [DOI] (P p)

Holger Ludwig, Christoph Meinken, Anastasija Matin, Jörg Stülke
Insufficient expression of the ilv-leu operon encoding enzymes of branched-chain amino acid biosynthesis limits growth of a Bacillus subtilis ccpA mutant.
J Bacteriol: 2002, 184(18);5174-8
[PubMed:12193635] [WorldCat.org] [DOI] (P p)

Ulrike Mäder, Georg Homuth, Christian Scharf, Knut Büttner, Rüdiger Bode, Michael Hecker
Transcriptome and proteome analysis of Bacillus subtilis gene expression modulated by amino acid availability.
J Bacteriol: 2002, 184(15);4288-95
[PubMed:12107147] [WorldCat.org] [DOI] (P p)

F J Grundy, T M Henkin
Conservation of a transcription antitermination mechanism in aminoacyl-tRNA synthetase and amino acid biosynthesis genes in gram-positive bacteria.
J Mol Biol: 1994, 235(2);798-804
[PubMed:8289305] [WorldCat.org] [DOI] (P p)

J A Grandoni, S A Zahler, J M Calvo
Transcriptional regulation of the ilv-leu operon of Bacillus subtilis.
J Bacteriol: 1992, 174(10);3212-9
[PubMed:1577690] [WorldCat.org] [DOI] (P p)