GapB

From SubtiWiki
Revision as of 07:01, 28 May 2009 by Jstuelk (talk | contribs) (References)
Jump to: navigation, search
  • Description: glyceraldehyde-3-phosphate dehydrogenase, NADP-dependent, gluconeogenic enzyme

Gene name gapB
Synonyms ppc
Essential no
Product glyceraldehyde-3-phosphate dehydrogenase 2
Function anabolic enzyme in gluconeogenesis
MW, pI 37,3 kDa, 6.47
Gene length, protein length 1020 bp, 340 amino acids
Immediate neighbours ytcD, speD
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
GapB context.gif
This image was kindly provided by SubtiList



The gene

Basic information

  • Coordinates: 2966075 - 2967094

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: D-glyceraldehyde 3-phosphate + phosphate + NAD(P)+ = 3-phospho-D-glyceroyl phosphate + NAD(P)H (according to Swiss-Prot) D-glyceraldehyde 3-phosphate + phosphate + NAD(P)(+) = 3-phospho-D-glyceroyl phosphate + NAD(P)H.
  • Protein family: glyceraldehyde-3-phosphate dehydrogenase family (according to Swiss-Prot) glyceraldehyde-3-phosphate dehydrogenase family
  • Paralogous protein(s): GapA

Extended information on the protein

  • Kinetic information:
  • Domains:
    • Nucleotid bindinge domain (12-13)
    • 2x Glyceraldehyde 3-phosphate binding domain (151-153) & (210-211)
  • Modification:
  • Cofactor(s):
  • Effectors of protein activity:
  • Interactions:
  • Localization: Cytoplasm (Homogeneous) PubMed

Database entries

  • Structure:

Additional information

Expression and regulation

  • Regulation: repressed (70-times) by Glc, repressor CcpN PubMed
  • Regulatory mechanism: transcription repression
  • Additional information:

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • Antibody:

Labs working on this gene/protein

Stephane Aymerich, Microbiology and Molecular Genetics, INRA Paris-Grignon, France

Your additional remarks

References

Simon Tännler, Eliane Fischer, Dominique Le Coq, Thierry Doan, Emmanuel Jamet, Uwe Sauer, Stéphane Aymerich
CcpN controls central carbon fluxes in Bacillus subtilis.
J Bacteriol: 2008, 190(18);6178-87
[PubMed:18586936] [WorldCat.org] [DOI] (I p)

Helena B Thomaides, Ella J Davison, Lisa Burston, Hazel Johnson, David R Brown, Alison C Hunt, Jeffery Errington, Lloyd Czaplewski
Essential bacterial functions encoded by gene pairs.
J Bacteriol: 2007, 189(2);591-602
[PubMed:17114254] [WorldCat.org] [DOI] (P p)

Jean-Christophe Meile, Ling Juan Wu, S Dusko Ehrlich, Jeff Errington, Philippe Noirot
Systematic localisation of proteins fused to the green fluorescent protein in Bacillus subtilis: identification of new proteins at the DNA replication factory.
Proteomics: 2006, 6(7);2135-46
[PubMed:16479537] [WorldCat.org] [DOI] (P p)

Pascale Servant, Dominique Le Coq, Stéphane Aymerich
CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes.
Mol Microbiol: 2005, 55(5);1435-51
[PubMed:15720552] [WorldCat.org] [DOI] (P p)

A Sekowska, J Y Coppée, J P Le Caer, I Martin-Verstraete, A Danchin
S-adenosylmethionine decarboxylase of Bacillus subtilis is closely related to archaebacterial counterparts.
Mol Microbiol: 2000, 36(5);1135-47
[PubMed:10844697] [WorldCat.org] [DOI] (P p)

S Fillinger, S Boschi-Muller, S Azza, E Dervyn, G Branlant, S Aymerich
Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium.
J Biol Chem: 2000, 275(19);14031-7
[PubMed:10799476] [WorldCat.org] [DOI] (P p)