FadB

From SubtiWiki
Revision as of 14:23, 21 April 2012 by Jstuelk (talk | contribs)
Jump to: navigation, search
  • Description: 3-hydroxyacyl-CoA dehydratase

Gene name fadB
Synonyms ysiB
Essential no
Product 3-hydroxyacyl-CoA dehydratase
Function fatty acid degradation
Metabolic function and regulation of this protein in SubtiPathways:
Fatty acid degradation
MW, pI 27 kDa, 4.951
Gene length, protein length 774 bp, 258 aa
Immediate neighbours etfB, fadR
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
YsiB context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
FadB expression.png




























Categories containing this gene/protein

utilization of lipids, phosphoproteins

This gene is a member of the following regulons

CcpA regulon, FadR regulon

The gene

Basic information

  • Locus tag: BSU28540

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: (3S)-3-hydroxyacyl-CoA = trans-2(or 3)-enoyl-CoA + H2O (according to Swiss-Prot)
  • Protein family: enoyl-CoA hydratase/isomerase family (according to Swiss-Prot)
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
    • phosphorylated on Arg-230 PubMed
  • Cofactor(s):
  • Effectors of protein activity:

Database entries

  • Structure: 3PEA (from B. anthracis, 49% identity, 66% similarity)
  • KEGG entry: [3]

Additional information

Expression and regulation

  • Additional information:

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

Additional publications: PubMed

Alexander K W Elsholz, Kürsad Turgay, Stephan Michalik, Bernd Hessling, Katrin Gronau, Dan Oertel, Ulrike Mäder, Jörg Bernhardt, Dörte Becher, Michael Hecker, Ulf Gerth
Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis.
Proc Natl Acad Sci U S A: 2012, 109(19);7451-6
[PubMed:22517742] [WorldCat.org] [DOI] (I p)

Yasutaro Fujita, Hiroshi Matsuoka, Kazutake Hirooka
Regulation of fatty acid metabolism in bacteria.
Mol Microbiol: 2007, 66(4);829-39
[PubMed:17919287] [WorldCat.org] [DOI] (P p)

Hiroshi Matsuoka, Kazutake Hirooka, Yasutaro Fujita
Organization and function of the YsiA regulon of Bacillus subtilis involved in fatty acid degradation.
J Biol Chem: 2007, 282(8);5180-94
[PubMed:17189250] [WorldCat.org] [DOI] (P p)

Hans-Matti Blencke, Georg Homuth, Holger Ludwig, Ulrike Mäder, Michael Hecker, Jörg Stülke
Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways.
Metab Eng: 2003, 5(2);133-49
[PubMed:12850135] [WorldCat.org] [DOI] (P p)