Difference between revisions of "Eno"

From SubtiWiki
Jump to: navigation, search
(Basic information/ Evolution)
(Extended information on the protein)
Line 68: Line 68:
 
* '''Modification:'''
 
* '''Modification:'''
  
* '''Cofactor(s):'''
+
* '''Cofactor(s):''' magnesium ion
  
 
* '''Effectors of protein activity:'''
 
* '''Effectors of protein activity:'''

Revision as of 09:17, 9 January 2009

  • Description: write here

Gene name eno
Synonyms
Essential yes
Product write here
Function write here
MW, pI 46,4 kDa, 4.49
Gene length, protein length 1290 bp, 430 amino acids
Immediate neighbours pgm, yvgK
Gene sequence (+200bp) Protein sequence
Genetic context
File:GenE context.gif












The gene

Basic information

  • Coordinates:

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: 2-phospho-D-glycerate = phosphoenolpyruvate + H(2)O
  • Protein family: enolase family
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
    • substrate binding domain (366–369)
  • Modification:
  • Cofactor(s): magnesium ion
  • Effectors of protein activity:
  • Interactions:
  • Localization:

Database entries

  • Structure:
  • Swiss prot entry: [3]
  • KEGG entry: [4]
  • E.C. number: [5]

Additional information

Expression and regulation

  • Regulation: neg. regulated by CggR PubMed, induced by sugar
  • Additional information:

Biological materials

Labs working on this gene/protein

Jörg Stülke, University of Göttingen, Germany Homepage

Your additional remarks

References

  1. Commichau, F. M., Rothe, F. M., Herzberg, C., Wagner, E., Hellwig, D., Lehnik-Habrink, M., Hammer, E., Völker, U. & Stülke, J. Novel activities of glycolytic enzymes in Bacillus subtilis: Interactions with essential proteins involved in mRNA processing. subm.
  2. Ludwig, H., Homuth, G., Schmalisch, M., Dyka, F. M., Hecker, M., and Stülke, J. (2001) Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41, 409-422.PubMed