SubtiBank SubtiBank

It will happen very soon:

International Conference on Bacilli and Gram-positive bacteria

June 11 - 15, 2017, Berlin, Germany

Check out the program here

Categories containing this gene/protein

phosphotransferase systems, carbon core metabolism, transcription factors and their control, trigger enzyme, membrane proteins, phosphoproteins

This gene is a member of the following regulons

GlcT regulon, stringent response


  • Coordinates on the chromosome (coding sequence): 1,457,187 -> 1,459,286
  • The protein

    Catalyzed reaction/ biological activity

  • transport and phosphorylation of glucose, receives a phosphate from HPr at the IIA domain (His-620), the phosphate group is then transferred to the IIB domain (Cys-461) an finally to the incoming glucose. In the absence of glucose, PtsG phosphorylates and thereby inactivates the transcriptional antiterminator GlcT.
  • Protein family

  • PTS permease, glucose permease (Glc) family PubMed, PTS enzyme II
  • Paralogous protein(s)

    Kinetic information


  • 11x transmembrane domain (16–36, 89–109, 139–159, 180–200, 233–253, 283–303, 313–333, 338–358, 365–385, 388–408)
  • PTS EIIC domain ( 1-424)
  • PTS EIIB domain (439–520)
  • PTS EIIA domain (568–672)
  • Modification

  • transient phosphorylation (HPr-dependent) on His-620, then internal phosphotransfer from His-620 to Cys-461
  • Cofactors

    Effectors of protein activity


  • 1AX3 (IIA domain), 1GPR (IIA domain), IIA domain NCBI, NMR IIA domain NCBI
  • Localization

  • membrane protein PubMed
  • Interactions

  • HPr-PtsG PubMed
  • PtsG-GlcT (for phosphorylation of GlcT) PubMed
  • Additional information

    Expression and Regulation


  • ptsG-ptsH-ptsI PubMed
  • Sigma factor

  • SigA PubMed
  • Regulation

  • expression activated by glucose (32 fold) (GlcT) PubMed
  • subject to negative stringent control upon lysine starvation PubMed
  • Regulatory mechanism

  • transcriptional antitermination via the GlcT-dependent RNA switch PubMed
  • stringent response: due to presence of guanine at 1 position of the transcript PubMed
  • Additional information

    Biological materials


    Expression vector

  • pGP123 (domains BA, in pWH844), available in Jörg Stülke's lab
  • pGP141 (domains BA, mut: H620D, in pWH844), available in Jörg Stülke's lab
  • pGP428 (EIIB, in pWH844), available in Jörg Stülke's lab
  • pGP437(EIIA in pGP570, with thrombin cleavage site), available in Jörg Stülke's lab
  • lacZ fusion

  • pGP34 (pAC5) PubMed, available in Jörg Stülke's lab
  • pGP66 (pAC7) PubMed, available in Jörg Stülke's lab
  • pGP606 (mutant terminator, pAC6), available in Jörg Stülke's lab
  • pGP532 (pAC7), available in Jörg Stülke's lab
  • series of promoter deletions are available in pAC5 and pAC6, available in Jörg Stülke's lab
  • series of RAT mutants are available in pAC6, available in Jörg Stülke's lab
  • GFP fusion

    two-hybrid system

    FLAG-tag construct


    Labs working on this gene/protein

  • Jörg Stülke, University of Göttingen, Germany
  • Homepage
  • References


    Commichau FM(1), Stülke J.

    Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression.

    Mol Microbiol. 2008 Feb;67(4):692-702. Epub 2007 Dec 11.

    Original publications

    Cabrera-Valladares N, Martínez LM, Flores N, Hernández-Chávez G, Martínez A, Bolívar F, Gosset G

    Physiologic consequences of glucose transport and phosphoenolpyruvate node modifications in Bacillus subtilis 168

    J Mol Microbiol Biotechnol. 2012;22(3):177-97. doi: 10.1159/000339973. Epub 2012 Jul 26. PubMed PMID: 22846916.
    Tojo S, Kumamoto K, Hirooka K, Fujita Y

    Heavy involvement of stringent transcription control depending on the adenine or guanine species of the transcription initiation site in glucose and pyruvate metabolism in Bacillus subtilis

    J Bacteriol. 2010 Mar;192(6):1573-85. doi: 10.1128/JB.01394-09. Epub 2010 Jan 15. PubMed PMID: 20081037; PubMed Central PMCID: PMC2832531.
    Hahne H, Wolff S, Hecker M, Becher D

    From complementarity to comprehensiveness--targeting the membrane proteome of growing Bacillus subtilis by divergent approaches

    Proteomics. 2008 Oct;8(19):4123-36. doi: 10.1002/pmic.200800258. PubMed PMID: 18763711.
    Schilling O, Herzberg C, Hertrich T, Vörsmann H, Jessen D, Hübner S, Titgemeyer F, Stülke J

    Keeping signals straight in transcription regulation: specificity determinants for the interaction of a family of conserved bacterial RNA-protein couples

    Nucleic Acids Res. 2006;34(21):6102-15. Epub 2006 Oct 29. PubMed PMID: 17074746; PubMed Central PMCID: PMC1635312.
    Schilling O, Langbein I, Müller M, Schmalisch MH, Stülke J

    A protein-dependent riboswitch controlling ptsGHI operon expression in Bacillus subtilis: RNA structure rather than sequence provides interaction specificity

    Nucleic Acids Res. 2004 May 20;32(9):2853-64. Print 2004. PubMed PMID: 15155854; PubMed Central PMCID: PMC419612.
    Schmalisch MH, Bachem S, Stülke J

    Control of the Bacillus subtilis antiterminator protein GlcT by phosphorylation

    Elucidation of the phosphorylation chain leading to inactivation of GlcT. J Biol Chem. 2003 Dec 19;278(51):51108-15. Epub 2003 Oct 3. PubMed PMID: 14527945.
    Blencke HM, Homuth G, Ludwig H, Mäder U, Hecker M, Stülke J

    Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways

    Metab Eng. 2003 Apr;5(2):133-49. PubMed PMID: 12850135.
    Stülke J, Martin-Verstraete I, Zagorec M, Rose M, Klier A, Rapoport G

    Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT

    Mol Microbiol. 1997 Jul;25(1):65-78. PubMed PMID: 11902727.
    Reizer J, Bachem S, Reizer A, Arnaud M, Saier MH Jr, Stülke J

    Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis

    Microbiology. 1999 Dec;145 ( Pt 12):3419-29. PubMed PMID: 10627040.
    Langbein I, Bachem S, Stülke J

    Specific interaction of the RNA-binding domain of the bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT

    J Mol Biol. 1999 Nov 5;293(4):795-805. PubMed PMID: 10543968.
    Bachem S, Stülke J

    Regulation of the Bacillus subtilis GlcT antiterminator protein by components of the phosphotransferase system

    J Bacteriol. 1998 Oct;180(20):5319-26. PubMed PMID: 9765562; PubMed Central PMCID: PMC107579.
    Chen Y, Case DA, Reizer J, Saier MH Jr, Wright PE

    High-resolution solution structure of Bacillus subtilis IIAglc

    Proteins. 1998 May 15;31(3):258-70. PubMed PMID: 9593197.
    Bachem S, Faires N, Stülke J

    Characterization of the presumptive phosphorylation sites of the Bacillus subtilis glucose permease by site-directed mutagenesis: implication in glucose transport and catabolite repression

    FEMS Microbiol Lett. 1997 Nov 15;156(2):233-8. PubMed PMID: 9513271.
    Chen Y, Reizer J, Saier MH Jr, Fairbrother WJ, Wright PE

    Mapping of the binding interfaces of the proteins of the bacterial phosphotransferase system, HPr and IIAglc

    Biochemistry. 1993 Jan 12;32(1):32-7. PubMed PMID: 8418852.
    Sutrina SL, Reddy P, Saier MH Jr, Reizer J

    The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease

    J Biol Chem. 1990 Oct 25;265(30):18581-9. PubMed PMID: 2120236.
    Gonzy-Tréboul G, de Waard JH, Zagorec M, Postma PW

    The glucose permease of the phosphotransferase system of Bacillus subtilis: evidence for IIGlc and IIIGlc domains

    Mol Microbiol. 1991 May;5(5):1241-9. PubMed PMID: 1956301.
    Kapadia G, Chen CC, Reddy P, Saier MH Jr, Reizer J, Herzberg O

    Crystallization of the IIA domain of the glucose permease of Bacillus subtilis

    J Mol Biol. 1991 Oct 20;221(4):1079-80. PubMed PMID: 1942043.
    Liao DI, Kapadia G, Reddy P, Saier MH Jr, Reizer J, Herzberg O

    Structure of the IIA domain of the glucose permease of Bacillus subtilis at 2

    2-A resolution. Biochemistry. 1991 Oct 8;30(40):9583-94. PubMed PMID: 1911744.
    Fairbrother WJ, Cavanagh J, Dyson HJ, Palmer AG 3rd, Sutrina SL, Reizer J, Saier MH Jr, Wright PE

    Polypeptide backbone resonance assignments and secondary structure of Bacillus subtilis enzyme IIIglc determined by two-dimensional and three-dimensional heteronuclear NMR spectroscopy

    Biochemistry. 1991 Jul 16;30(28):6896-907. PubMed PMID: 1906345.
    Fairbrother WJ, Palmer AG 3rd, Rance M, Reizer J, Saier MH Jr, Wright PE

    Assignment of the aliphatic 1H and 13C resonances of the Bacillus subtilis glucose permease IIA domain using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy

    Biochemistry. 1992 May 12;31(18):4413-25. PubMed PMID: 1581296.
    Zagorec M, Postma PW

    Cloning and nucleotide sequence of the ptsG gene of Bacillus subtilis

    Mol Gen Genet. 1992 Aug;234(2):325-8. PubMed PMID: 1508157.
    Herzberg O

    An atomic model for protein-protein phosphoryl group transfer

    J Biol Chem. 1992 Dec 5;267(34):24819-23. PubMed PMID: 1447219.
    Stone MJ, Fairbrother WJ, Palmer AG 3rd, Reizer J, Saier MH Jr, Wright PE

    Backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N NMR relaxation measurements

    Biochemistry. 1992 May 12;31(18):4394-406. PubMed PMID: 1316146.
    No login