SubtiBank SubtiBank

It will happen very soon:

International Conference on Bacilli and Gram-positive bacteria

June 11 - 15, 2017, Berlin, Germany

Check out the program here


Categories containing this gene/protein

carbon core metabolism, transcription factors and their control, regulators of core metabolism

This gene is a member of the following regulons

CggR regulon

The CggR regulon


  • Coordinates on the chromosome (coding sequence): 3,482,752 -> 3,483,774
  • The protein

    Catalyzed reaction/ biological activity

  • transcription repression of the glycolytic gapA operon
  • Protein family

  • sorC transcriptional regulatory family (according to Swiss-Prot)
  • Paralogous protein(s)

    Kinetic information


  • DNA binding domain (H-T-H motif) (37–56)
  • Modification


    Effectors of protein activity

  • fructose 1.6-bisphosphate PubMed and dihydroxyacetone phosphate, glucose-6-phosphate and fructose-6-phosphate PubMed act as inducer and result in release of CggR from the DNA
  • Structure

  • 2OKG ( effector binding domain), 3BXH (in complex with fructose-6-phosphate), complex with Fructose-6-Phosphate NCBI, effector binding domain NCBI
  • Localization

  • cytoplasma PubMed
  • Interactions

  • active as dimer (according to PubMed)
  • Additional information

    Expression and Regulation


  • cggR-gapA-pgk-tpi-pgm-eno PubMed
  • cggR-gapA PubMed
  • Sigma factor

  • SigA PubMed
  • Regulation

  • expression activated by glucose (77-fold) (CggR) PubMed
  • Regulatory mechanism

  • cggR: transcription repression PubMed
  • Additional information

  • The primary mRNAs of the operon are highly unstable. The primary mRNA is subject to processing at the very end of the cggR open reading frame. This results in stable mature gapA and gapA-pgk-tpiA-pgm-eno mRNAs. PubMed The processing event requires the RNase Y PubMed.
  • The intracellular concentration of CggR is about 230 nM (according to PubMed).
  • The accumulation of the cggR-gapA mRNA is strongly dependent on the presence of the YkzW peptide, due to stabilization of the mRNA PubMed.
  • the mRNA is substantially stabilized upon depletion of RNase Y PubMed
  • exonucleolytic degradation of the cggR RNA segment is performed by PnpA PubMed
  • Biological materials


  • MGNA-A463 (yvbQ::erm), available at the NBRP B. subtilis, Japan
  • GP311 (in frame deletion), available in Jörg Stülke's lab
  • SM-NB7 (cggR-spc), available in Anne Galiniers and Boris Görkes labs
  • Expression vector

  • pGP705 (N-terminal His-tag, in pWH844), available in Jörg Stülke's lab
  • lacZ fusion

  • pGP504 (in pAC7), pGP509 (in pAC6), available in Jörg Stülke's lab
  • GFP fusion

    two-hybrid system

    FLAG-tag construct


  • available in Jörg Stülke's lab
  • Labs working on this gene/protein

  • Stephane Aymerich, Microbiology and Molecular Genetics, INRA Paris-Grignon, France
  • References


    Brantl S(1), Licht A.

    Characterisation of Bacillus subtilis transcriptional regulators involved in metabolic processes.

    Curr Protein Pept Sci. 2010 Jun;11(4):274-91.

    Original Publications

    Liu B, Deikus G, Bree A, Durand S, Kearns DB, Bechhofer DH

    Global analysis of mRNA decay intermediates in Bacillus subtilis wild-type and polynucleotide phosphorylase-deletion strains

    Mol Microbiol. 2014 Oct;94(1):41-55. doi: 10.1111/mmi.12748. Epub 2014 Aug 21. PubMed PMID: 25099370; PubMed Central PMCID: PMC4177450.
    Declerck N, Royer CA

    Interactions in gene expression networks studied by two-photon fluorescence fluctuation spectroscopy

    Methods Enzymol. 2013;519:203-30. doi: 10.1016/B978-0-12-405539-1.00007-5. PubMed PMID: 23280112.
    Ferguson ML, Le Coq D, Jules M, Aymerich S, Radulescu O, Declerck N, Royer CA

    Reconciling molecular regulatory mechanisms with noise patterns of bacterial metabolic promoters in induced and repressed states

    Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):155-60. doi: 10.1073/pnas.1110541108. Epub 2011 Dec 21. PubMed PMID: 22190493; PubMed Central PMCID: PMC3252923.
    Lehnik-Habrink M, Schaffer M, Mäder U, Diethmaier C, Herzberg C, Stülke J

    RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y

    Mol Microbiol. 2011 Sep;81(6):1459-73. doi: 10.1111/j.1365-2958.2011.07777.x. Epub 2011 Aug 4. PubMed PMID: 21815947.
    Chaix D, Ferguson ML, Atmanene C, Van Dorsselaer A, Sanglier-Cianférani S, Royer CA, Declerck N

    Physical basis of the inducer-dependent cooperativity of the Central glycolytic genes Repressor/DNA complex

    Nucleic Acids Res. 2010 Sep;38(17):5944-57. doi: 10.1093/nar/gkq334. Epub 2010 May 12. PubMed PMID: 20462860; PubMed Central PMCID: PMC2943609.
    Gimpel M, Heidrich N, Mäder U, Krügel H, Brantl S

    A dual-function sRNA from B

    subtilis: SR1 acts as a peptide encoding mRNA on the gapA operon. Mol Microbiol. 2010 May;76(4):990-1009. doi: 10.1111/j.1365-2958.2010.07158.x. Epub 2010 Apr 1. PubMed PMID: 20444087.
    Atmanene C, Chaix D, Bessin Y, Declerck N, Van Dorsselaer A, Sanglier-Cianferani S

    Combination of noncovalent mass spectrometry and traveling wave ion mobility spectrometry reveals sugar-induced conformational changes of central glycolytic genes repressor/DNA complex

    Anal Chem. 2010 May 1;82(9):3597-605. doi: 10.1021/ac902784n. PubMed PMID: 20361740.
    Commichau FM, Rothe FM, Herzberg C, Wagner E, Hellwig D, Lehnik-Habrink M, Hammer E, Völker U, Stülke J

    Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing

    Mol Cell Proteomics. 2009 Jun;8(6):1350-60. doi: 10.1074/mcp.M800546-MCP200. Epub 2009 Feb 3. PubMed PMID: 19193632; PubMed Central PMCID: PMC2690492.
    Rezácová P, Kozísek M, Moy SF, Sieglová I, Joachimiak A, Machius M, Otwinowski Z

    Crystal structures of the effector-binding domain of repressor Central glycolytic gene Regulator from Bacillus subtilis reveal ligand-induced structural changes upon binding of several glycolytic intermediates

    Mol Microbiol. 2008 Aug;69(4):895-910. doi: 10.1111/j.1365-2958.2008.06318.x. Epub 2008 Jun 28. PubMed PMID: 18554327; PubMed Central PMCID: PMC2764557.
    Doan T, Martin L, Zorrilla S, Chaix D, Aymerich S, Labesse G, Declerck N

    A phospho-sugar binding domain homologous to NagB enzymes regulates the activity of the central glycolytic genes repressor

    Proteins. 2008 Jun;71(4):2038-50. doi: 10.1002/prot.21883. PubMed PMID: 18186488.
    Zorrilla S, Chaix D, Ortega A, Alfonso C, Doan T, Margeat E, Rivas G, Aymerich S, Declerck N, Royer CA

    Fructose-1,6-bisphosphate acts both as an inducer and as a structural cofactor of the central glycolytic genes repressor (CggR)

    Biochemistry. 2007 Dec 25;46(51):14996-5008. Epub 2007 Dec 4. PubMed PMID: 18052209.
    Zorrilla S, Doan T, Alfonso C, Margeat E, Ortega A, Rivas G, Aymerich S, Royer CA, Declerck N

    Inducer-modulated cooperative binding of the tetrameric CggR repressor to operator DNA

    Biophys J. 2007 May 1;92(9):3215-27. Epub 2007 Feb 9. PubMed PMID: 17293407; PubMed Central PMCID: PMC1852337.
    Blencke HM, Homuth G, Ludwig H, Mäder U, Hecker M, Stülke J

    Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways

    Metab Eng. 2003 Apr;5(2):133-49. PubMed PMID: 12850135.
    Meinken C, Blencke HM, Ludwig H, Stülke J

    Expression of the glycolytic gapA operon in Bacillus subtilis: differential syntheses of proteins encoded by the operon

    Microbiology. 2003 Mar;149(Pt 3):751-61. PubMed PMID: 12634343.
    Doan T, Aymerich S

    Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate

    Mol Microbiol. 2003 Mar;47(6):1709-21. PubMed PMID: 12622823.
    Ludwig H, Rebhan N, Blencke HM, Merzbacher M, Stülke J

    Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation

    Mol Microbiol. 2002 Jul;45(2):543-53. PubMed PMID: 12123463.
    Ludwig H, Homuth G, Schmalisch M, Dyka FM, Hecker M, Stülke J

    Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon

    Mol Microbiol. 2001 Jul;41(2):409-22. PubMed PMID: 11489127.
    Fillinger S, Boschi-Muller S, Azza S, Dervyn E, Branlant G, Aymerich S

    Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium

    J Biol Chem. 2000 May 12;275(19):14031-7. PubMed PMID: 10799476.
    No login